causalml Documentation

Someone at Uber

Dec 30, 2021

CONTENTS

About Causal ML 3
Methodology 5
2.1 Meta-Learner Algorithms e e e e 5
2.2 Tree-Based Algorithms e 8
2.3 Valueoptimization methods L o 9
2.4 Selected traditional methods 10
2.5 Targeted maximum likelihood estimation (TMLE) for ATE 12
Installation 13
3.1 Installusingconda L e e e e e e 13
32 Installusing Pip e e e 13
33 Install fromsource L e e e e e e 14
Examples 15
4.1 Propensity SCOTE v v i i e e e e e e e e e e e e e e e e e e e 15
4.2 Average Treatment Effect (ATE) Estimation 16
43 Morealgorithms 17
4.4 Interpretation Ll e e e 19
4.5 Validation. e e e e e e 19
4.6 Synthetic Data Generation Process L 19
4.7 Sensitivity AnalysisS L e e e e e e e e e e e e 22
4.8 Feature Selection e e 23
Interpretable Causal ML 25
5.1 Meta-Learner Feature Importances i i i e e 25
5.2 Uplift Tree Visualization e 28
5.3 Uplift Tree Feature Importances e 29
Validation 31
6.1 Validation with Multiple Estimates 31
6.2 Validation with Synthetic Data Sets L o 31
6.3 Validation with Uplift Curve (AUUC) e e it 33
6.4 Validation with Sensitivity Analysis L 35
causalml package 37
7.1 Submodules e e e e e e e e e 37
7.2 causalmlinference.tree module 37
7.3 causalmlinference.metamodule oL o 48
7.4 causalmloptimize module 59
7.5 causalml.dataset module e e e e e e e 63

7.6 causalml.matchmodule e e

7.7 causalmlpropensity module L e e e e
7.8 causalmlmetricsmodule oL L e e e e e
7.9 Module contentsl e e e e e e e e e e e e e e
References

8.1 Open Source Software Projects e
8.2 Papers.o e e e e e e e e
Changelog

9.1 0.11.0(2021-07-28)
9.2 0.10.0 (2021-02-18)
9.3 0.9.0 (2020-10-23)
9.4 0.8.0 (2020-07-17)
9.5 0.7.1 (2020-05-07)
9.6 0.7.0 (2020-02-28)
9.7 0.6.0 (2019-12-31)
9.8 0.5.0(2019-11-26)
9.9 0.4.0(2019-10-21)
9.10 0.3.0 (2019-09-17)
9.11 0.2.0 (2019-08-12)
9.12 0.1.0 (unreleased)

10 Indices and tables

Bibliography

Python Module Index

Index

97

99

101

103

causalml Documentation

Contents:

CONTENTS 1

causalml Documentation

2 CONTENTS

CHAPTER
ONE

ABOUT CAUSAL ML

Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine
learning algorithms based on recent research. It provides a standard interface that allows user to estimate the Condi-
tional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational
data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X,
without strong assumptions on the model form.

Typical use cases include:

e Campaign Targeting Optimization: An important lever to increase ROI in an advertising campaign is to target
the ad to the set of customers who will have a favorable response in a given KPI such as engagement or sales.
CATE identifies these customers by estimating the effect of the KPI from ad exposure at the individual level from
A/B experiment or historical observational data.

* Personalized Engagement: Company has multiple options to interact with its customers such as different prod-
uct choices in up-sell or mess aging channels for communications. One can use CATE to estimate the het-
erogeneous treatment effect for each customer and treatment option combination for an optimal personalized
recommendation system.

The package currently supports the following methods:
¢ Tree-based algorithms
— Uplift Random Forests on KL divergence, Euclidean Distance, and Chi-Square
— Uplift Random Forests on Contextual Treatment Selection
— Uplift Random Forests on delta-delta-p (A A P) criterion (only for binary trees and two-class problems)
* Meta-learner algorithms
— S-Learner

T-Learner

— X-Learner

R-Learner

— Doubly Robust (DR) learner
¢ Instrumental variables algorithms

— 2-Stage Least Squares (2SLS)

— Doubly Robust Instrumental Variable (DRIV) learner
* Neural network based algorithms

- CEVAE

— DragonNet

causalml Documentation

* Treatment optimization algorithms
— Counterfactual Unit Selection

— Counterfactual Value Estimator

4 Chapter 1. About Causal ML

CHAPTER
TWO

METHODOLOGY

2.1 Meta-Learner Algorithms

A meta-algorithm (or meta-learner) is a framework to estimate the Conditional Average Treatment Effect (CATE) using
any machine learning estimators (called base learners) [15].

A meta-algorithm uses either a single base learner while having the treatment indicator as a feature (e.g. S-learner), or
multiple base learners separately for each of the treatment and control groups (e.g. T-learner, X-learner and R-learner).

Confidence intervals of average treatment effect estimates are calculated based on the lower bound formular (7) from
[13].

2.1.1 S-Learner

S-learner estimates the treatment effect using a single machine learning model as follows:
Stage 1

Estimate the average outcomes j(x) with covariates X and an indicator variable for treatment effect W:
pwa)=EY | X =x,W = w]
using a machine learning model.

Stage 2
Define the CATE estimate as:

#(z) = p(z, W =1) — p(z, W = 0)

Including the propensity score in the model can reduce bias from regularization induced confounding [25].

When the control and treatment groups are very different in covariates, a single linear model is not sufficient to encode
the different relevant dimensions and smoothness of features for the control and treatment groups [1].

causalml Documentation

2.1.2 T-Learner

T-learner [15] consists of two stages as follows:
Stage 1

Estimate the average outcomes f () and py (x):

using machine learning models.
Stage 2
Define the CATE estimate as:

2.1.3 X-Learner

X-learner [15] is an extension of T-learner, and consists of three stages as follows:
Stage 1

Estimate the average outcomes po(z) and uq (z):

using machine learning models.
Stage 2

Impute the user level treatment effects, D} and D? for user 4 in the treatment group based on po(x), and user j in the
control groups based on (1 (x):

D} =Y} — jio(X})
DY = jn(X0) ~ Y7

then estimate 71 () = E[D'|X = x|, and 7o(z) = E[D°|X =] using machine learning models.
Stage 3
Define the CATE estimate by a weighted average of 71 (z) and 7o (z):

7(x) = g(z)o(x) + (1 = g(x))m1(2)

where g € [0, 1]. We can use propensity scores for g(z).

2.1.4 R-Learner

R-learner [18] uses the cross-validation out-of-fold estimates of outcomes 772(~%) (z;) and propensity scores é(~%) (z;).
It consists of two stages as follows:

Stage 1

Fit 7i(x) and é(z) with machine learning models using cross-validation.

6 Chapter 2. Methodology

causalml Documentation

Stage 2

Estimate treatment effects by minimising the R-loss, L, (7(x)):

Ealr(a)) = = 3 (Y = i) = (Wi = &0 (X0) (X))

2

where é(—%)(X;), etc. denote the out-of-fold held-out predictions made without using the i-th training sample.

2.1.5 Doubly Robust (DR) learner

DR-learner [14] estiamtes the CATE via cross-fitting a doubly-robust score function in two stages as follows. We start
by randomly split the data {Y, X, W} into 3 partitions {Y*, X*, W} i = {1,2,3}.
Stage 1

Fit a propensity score model é(x) with machine learning using { X', W}, and fit outcome regression models 179 (z)
and 711 () for treated and untreated users with machine learning using {Y2, X2 W?2}.

Stage 2
Use machine learning to fit the CATE model, 7(X) from the pseudo-outcome

W — &(X)
b= oo Y = mw (X)) + 1 (X) — g (X)

e(X)(1 —e(X))

with {Y3, X3, W3}

Stage 3

Repeat Stage 1 and Stage 2 again twice. Firstuse {Y2, X2 W2}, {Y3 X3 W3}, and {Y'!, X1, W'} for the propensity
score model, the outcome models, and the CATE model. Thenuse {Y?, X3 W3}, {Y? X2 W2}, and {Y!, X, W'}
for the propensity score model, the outcome models, and the CATE model. The final CATE model is the average of
the 3 CATE models.

2.1.6 Doubly Robust Instrumental Variable (DRIV) learner

We combine the idea from DR-learner [14] with the doubly robust score function for LATE described in [9] to es-
timate the conditional LATE. Towards that end, we start by randomly split the data {Y, X, W, Z} into 3 partitions
{YE X8 We 7Y = {1,2,3}.

Stage 1

Fit propensity score models éo(z) and é; (z) for assigned and unassigned users using { X!, W1, Z1}, and fit outcome
regression models 779 (z) and 7721 () for assigned and unassigned users with machine learning using {Y?2, X2, Z2}.
Assignment probabiliy, pz, can either be user provided or come from a simple model, since in most use cases assign-
ment is random by design.

Stage 2

Use machine learning to fit the conditional LATE model, 7(X) by minimizing the following loss function

L3 X)) =F Kml(X) ~ g (X) + Z(Y —th(X)) (- Z)l(li ;sz(X))

20V —&(X)) _ (L=)W — éalX) “X)ﬂ

~(@a(3%) — e (x) RS -

with {Y3, X3 W3}

2.1. Meta-Learner Algorithms 7

causalml Documentation

Stage 3

Similar to the DR-Learner Repeat Stage 1 and Stage 2 again twice with different permutations of partitions for estima-
tion. The final conditional LATE model is the average of the 3 conditional LATE models.

2.2 Tree-Based Algorithms

2.2.1 Uplift Tree

The Uplift Tree approach consists of a set of methods that use a tree-based algorithm where the splitting criterion is
based on differences in uplift. [21] proposed three different ways to quantify the gain in divergence as the result of
splitting [10]:

Dgain = Dafte?“spzn (PTa PC) - Dbeforespnt (PTa PC)
where D measures the divergence and P” and P refer to the probability distribution of the outcome of interest in

the treatment and control groups, respectively. Three different ways to quantify the divergence, KL, ED and Chi, are
implemented in the package.

2.2.2 KL
The Kullback-Leibler (KL) divergence is given by:

KIP Q= Y gl
k=left,right K

where p is the sample mean in the treatment group, ¢ is the sample mean in the control group and & indicates the leaf
in which p and g are computed [10]

2.2.3 ED
The Euclidean Distance is given by:

ED(P:Q)= Y (pr—aq)’

k=left,right

where the notation is the same as above.

2.2.4 Chi

Finally, the x2-divergence is given by:
2
Pr — 4k
P =) (e — 0
k=le ft,right qk

where the notation is again the same as above.

8 Chapter 2. Methodology

causalml Documentation

2.2.5 DDP

Another Uplift Tree algorithm that is implemented is the delta-delta-p (AAP) approach by [8], where the sample
splitting criterion is defined as follows:

AAP = |(P* (ylao) — P (ylao) — (P (ylar) — P (ylar)))|

where ag and a; are the outcomes of a Split A, y is the selected class, and PT and P€ are the response rates of
treatment and control group, respectively. In other words, we first calculate the difference in the response rate in each
branch (AP ¢ and AP,igp:), and subsequently, calculate their differences (AAP = |APjcfr — APrightl).

2.2.6 CTS

The final Uplift Tree algorithm that is implemented is the Contextual Treatment Selection (CTS) approach by [23],
where the sample splitting criterion is defined as follows:

Au(s) =01 | 8) x max Gu(on) +(6r | §) x max 5u(ér) = max, u(6)

where ¢; and ¢, refer to the feature subspaces in the left leaf and the right leaves respectively, p(¢; | ¢) denotes the
estimated conditional probability of a subject’s being in ¢; given ¢, and ;(¢;) is the conditional expected response
under treatment £.

2.3 Value optimization methods

The package supports methods for assigning treatment groups when treatments are costly. To understand the problem,
it is helpful to divide populations into the following four categories:

e Compliers. Those who will have a favourable outcome if and only if they are treated.

» Always-takers. Those who will have a favourable outcome whether or not they are treated.

* Never-takers. Those who will never have a favourable outcome whether or not they are treated.
* Defiers. Those who will have a favourable outcome if and only if they are not treated.

For a more detailed discussion see e.g. [2].

2.3.1 Counterfactual Unit Selection
[17] propose a method for selecting units for treatments using counterfactual logic. Suppose the following benefits for
selecting units belonging to the different categories above:

¢ Compliers:

* Always-takers: ~y

* Never-takers: 6

¢ Defiers: §

If X denotes the set of individual’s features, the unit selection problem can be formulated as follows:

argmax x P (complier | X) + P (always-taker | X') + 6 P(never-taker | X') + § P(defier | X)

2.3. Value optimization methods 9

causalml Documentation

The problem can be reformulated using counterfactual logic. Suppose W = w indicates that an individual is treated
and W = w’ indicates he or she is untreated. Similarly, let F' = f denote a favourable outcome for the individual and
F = f’ an unfavourable outcome. Then the optimization problem becomes:

argmaz x BP(fu, fir | X) + VP (fu, fur | X) +O0P(fy, fur | X) + 0P (fur, fi, | X)

Note that the above simply follows from the definitions of the relevant users segments. [17] then use counterfactual
logic ([20]) to solve the above optimization problem under certain conditions.

N.B. The current implementation in the package is highly experimental.

2.3.2 Counterfactual Value Estimator

The counterfactual value estimation method implemented in the package predicts the outcome for a unit under different
treatment conditions using a standard machine learning model. The expected value of assigning a unit into a particular
treatment is then given by

E[(U - CCw)Yw - Z'Cw]

where Y, is the probability of a favourable event (such as conversion) under a given treatment w, v is the value of the
favourable event, cc,, is the cost of the treatment triggered in case of a favourable event, and ic,, is the cost associated
with the treatment whether or not the outcome is favourable. This method builds upon the ideas discussed in [24].

2.4 Selected traditional methods

The package supports selected traditional causal inference methods. These are usually used to conduct causal inference
with observational (non-experimental) data. In these types of studies, the observed difference between the treatment
and the control is in general not equal to the difference between “potential outcomes” E[Y (1) — Y (0)]. Thus, the
methods below try to deal with this problem in different ways.

2.4.1 Matching

The general idea in matching is to find treated and non-treated units that are as similar as possible in terms of their
relevant characteristics. As such, matching methods can be seen as part of the family of causal inference approaches
that try to mimic randomized controlled trials.

While there are a number of different ways to match treated and non-treated units, the most common method is to use
the propensity score:

Treated and non-treated units are then matched in terms of e(X') using some criterion of distance, such as k : 1 nearest
neighbours. Because matching is usually between the treated population and the control, this method estimates the
average treatment effect on the treated (ATT):

E[Y (1) | W =1] - E[Y(0) | W = 1]

See [22] for a discussion of the strengths and weaknesses of the different matching methods.

10 Chapter 2. Methodology

causalml Documentation

2.4.2 Inverse probability of treatment weighting

The inverse probability of treatment weighting (IPTW) approach uses the propensity score e to weigh the treated and
non-treated populations by the inverse of the probability of the actual treatment W. For a binary treatment W € {1,0}:

w 1-W
+
e 1—e

In this way, the IPTW approach can be seen as creating an artificial population in which the treated and non-treated
units are similar in terms of their observed features X.

One of the possible benefits of IPTW compared to matching is that less data may be discarded due to lack of overlap
between treated and non-treated units. A known problem with the approach is that extreme propensity scores can
generate highly variable estimators. Different methods have been proposed for trimming and normalizing the IPT
weights ([12]). An overview of the IPTW approach can be found in [7].

2.4.3 2-Stage Least Squares (2SLS)

One of the basic requirements for identifying the treatment effect of W on Y is that W is orthogonal to the potential
outcome of Y, conditional on the covariates X. This may be violated if both W and Y are affected by an unobserved
variable, the error term after removing the true effect of W from Y, that is not in X. In this case, the instrumental
variables approach attempts to estimate the effect of W on Y with the help of a third variable Z that is correlated with
W but is uncorrelated with the error term. In other words, the instrument Z is only related with Y through the directed
path that goes through W. If these conditions are satisfied, in the case without covariates, the effect of W on Y can be
estimated using the sample analog of:

Cov(Y;, Z;)
C’O’U(VVZ'7 Zz)

The most common method for instrumental variables estimation is the two-stage least squares (2SLS). In this approach,
the cause variable W is first regressed on the instrument Z. Then, in the second stage, the outcome of interest Y is
regressed on the predicted value from the first-stage model. Intuitively, the effect of W on Y is estimated by using only
the proportion of variation in W due to variation in Z. Specifically, assume that we have the linear model

Y=Wa+Xf+u=2v+u

Here for convenience we let = = [V, X] and v = [o/, #']'. Assume that we have instrumental variables Z whose
number of columns is at least the number of columns of W, let Q = [Z, X, 2SLS estimator is as follows
Aasps = [EQQ)TIQE] T [EQ(QQ) QY]

See [3] for a detailed discussion of the method.

2.4.4 LATE

In many situations the treatment 1/ may depend on user’s own choice and cannot be administered directly in an exper-
imental setting. However one can randomly assign users into treatment/control groups so that users in the treatment
group can be nudged to take the treatment. This is the case of noncompliance, where users may fail to comply with
their assignment status, Z, as to whether to take treatment or not. Similar to the section of Value optimization methods,
in general there are 3 types of users in this situation,

* Compliers Those who will take the treatment if and only if they are assigned to the treatment group.
* Always-Taker Those who will take the treatment regardless which group they are assigned to.

* Never-Taker Those who wil not take the treatment regardless which group they are assigned to.

2.4. Selected traditional methods 11

causalml Documentation

However one assumes that there is no Defier for identification purposes, i.e. those who will only take the treatment if
they are assigned to the control group.

In this case one can measure the treatment effect of Compliers,

E[Y|Z =1] - E[Y|Z = 0]

TComplier = E[W|Z _ 1] — E[W|Z _ 0]

This is Local Average Treatment Effect (LATE). The estimator is also equivalent to 2SLS if we take the assignment
status, Z, as an instrument.

2.5 Targeted maximum likelihood estimation (TMLE) for ATE

Targeted maximum likelihood estimation (TMLE) [16] provides a doubly robust semiparametric method that “targets”
directly on the average treatment effect with the aid from machine learning algorithms. Compared to other methods
including outcome regression and inverse probability of treatment weighting, TMLE usually gives better performance
especially when dealing with skewed treatment and outliers.

Given binary treatment W, covariates X, and outcome Y, the TMLE for ATE is performed in the following steps
Step 1

Use cross fit to estimate the propensity score é(z), the predicted outcome for treated 11 (), and predicted outcome
for control g () with machine learning.

Step 2

Scale Y into Y = —Xomin X o6 that Y € [0,1]. Use the same scale function to transform 77; () into 7 (), i = 0, 1.

Clip the scaled functions so that their values stay in the unit interval.
Step 3
Let Q = log(mw (X)/(1 — mw (X))). Maximize the following pseudo log-likelihood function

1 -
max — Z [Y; log <1 + exp(—Q; — ho

1-W w
ho,h1

. axy) ey

(2

- 1-W w
1-Y;)1 1 i
+< z) Og(+exp(Qz+h017é(Xl) +h1é):|

Step 4
Let
~ 1
QO = 1 P
1+ exp (—Q - ho%)
_ 1
1+ exp (—Q - h1ﬁ>

o

The ATE estimate is the sample average of the differences of Q1 and Qy after rescale to the original range.

12 Chapter 2. Methodology

CHAPTER
THREE

INSTALLATION

Installation with conda is recommended. conda environment files for Python 3.6, 3.7, 3.8 and 3.9 are available in the
repository. To use models under the inference. tf module (e.g. DragonNet), additional dependency of tensorflow
is required. For detailed instructions, see below.

3.1 Install using conda

This will create a new conda virtual environment named causalml-[tf-]py3x, where xisin [6, 7, 8, 9]. e.g.
causalml-py37 or causalml-tf-py38. If you want to change the name of the environment, update the relevant
YAML file in envs/.

$ git clone https://github.com/uber/causalml.git

$ cd causalml/envs/

$ conda env create -f environment-py38.yml # for the virtual environment with Python 3.
-8 and CausalML

$ conda activate causalml-py38

(causalml-py38)

To install causalml with tensorflow using conda, use arelevant causalml-[t£f-]py3x environment file as follows:

$ git clone https://github.com/uber/causalml.git

$ cd causalml/envs/

$ conda env create -f environment-tf-py38.yml # for the virtual environment with,,
—Python 3.8 and CausallML

$ conda activate causalml-tf-py38

(causalml-tf-py38) pip install -U numpy # this step is necessary to.
—fix [#338] (https://github.com/uber/causalml/issues/338)

3.2 Install using pip

$ git clone https://github.com/uber/causalml.git
$ cd causalml

$ pip install -r requirements.txt

$ pip install causalml

To install causalml with tensorflow using pip, use causalml[t£f] as follows:

13

causalml Documentation

$ git clone https://github.com/uber/causalml.git

$ cd causalml

$ pip install -r requirements-tf.txt

$ pip install causalml[tf]

$ pip install -U numpy # this step.
—»1s necessary to fix [#338](https://github.com/uber/causalml/issues/338)

3.3 Install from source

$ git clone https://github.com/uber/causalml.git
$ cd causalml

$ pip install -r requirements.txt

$ python setup.py build_ext --inplace

$ python setup.py install

14 Chapter 3. Installation

CHAPTER
FOUR

EXAMPLES

Working example notebooks are available in the example folder.

4.1 Propensity Score

4.1.1 Propensity Score Estimation

from causalml.propensity import ElasticNetPropensityModel

pm = ElasticNetPropensityModel (n_fold=5, random_state=42)
ps = pm.fit_predict(X, y)

4.1.2 Propensity Score Matching

from causalml.match import NearestNeighborMatch, create_table_one

psm = NearestNeighborMatch(replace=False,
ratio=1,
random_state=42)
matched = psm.match_by_group(data=df,
treatment_col=treatment_col,
score_col=score_col,
groupby_col=groupby_col)

create_table_one(data=matched,
treatment_col=treatment_col,
features=covariates)

15

https://github.com/uber/causalml/tree/master/examples

causalml Documentation

4.2 Average Treatment Effect (ATE) Estimation

4.2.1 Meta-learners and Uplift Trees

In addition to the Methodology section, you can find examples in the links below for Meta-Learner Algorithms and
Tree-Based Algorithms

* Meta-learners (S/T/X/R): meta_learners_with_synthetic_data.ipynb

Meta-learners (S/T/X/R) with multiple treatment: meta_learners_with_synthetic_data_multiple_treatment.ipynb

Comparing meta-learners across simulation setups: benchmark_simulation_studies.ipynb

Doubly Robust (DR) learner: dr_learner_with_synthetic_data.ipynb

TMLE learner: validation_with_tmle.ipynb

Uplift Trees: uplift_trees_with_synthetic_data.ipynb

from causalml.inference.meta import LRSRegressor

from causalml.inference.meta import XGBTRegressor, MLPTRegressor
from causalml.inference.meta import BaseXRegressor

from causalml.inference.meta import BaseRRegressor

from xgboost import XGBRegressor

from causalml.dataset import synthetic_data

y, X, treatment, _, _, e = synthetic_data(mode=1, n=1000, p=5, sigma=1.0)

1r = LRSRegressor()

te, 1lb, ub = lr.estimate_ate(X, treatment, y)

print('Average Treatment Effect (Linear Regression): {:.2f} ({:.2f}, {:.2f})".
—format(te[0], 1b[0], ub[0]))

xg = XGBTRegressor (random_state=42)

te, 1lb, ub = xg.estimate_ate(X, treatment, y)

print('Average Treatment Effect (XGBoost): {:.2f} ({:.2f}, {:.2f})".format(te[0], 1b[0],.
~ub[0]1))

nn = MLPTRegressor(hidden_layer_sizes=(10, 10),
learning rate_init=.1,
early_stopping=True,
random_state=42)
te, 1lb, ub = nn.estimate_ate(X, treatment, y)
print('Average Treatment Effect (Neural Network (MLP)): {:.2f} ({:.2f}, {:.2f})"'.
—format(te[0], 1b[0], ub[0]))

x1 = BaseXRegressor(learner=XGBRegressor (random_state=42))

te, 1lb, ub = xl.estimate_ate(X, treatment, y, e)

print('Average Treatment Effect (BaseXRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})".
—format(te[0], 1b[0], ub[0]))

rl = BaseRRegressor(learner=XGBRegressor (random_state=42))

te, 1lb, ub = rl.estimate_ate(X=X, p=e, treatment=treatment, y=y)

print('Average Treatment Effect (BaseRRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})".
—format(te[0], 1b[0], ub[0]))

16 Chapter 4. Examples

https://github.com/uber/causalml/blob/master/examples/meta_learners_with_synthetic_data.ipynb
https://github.com/uber/causalml/blob/master/examples/meta_learners_with_synthetic_data_multiple_treatment.ipynb
https://github.com/uber/causalml/blob/master/examples/benchmark_simulation_studies.ipynb
https://github.com/uber/causalml/blob/master/examples/dr_learner_with_synthetic_data.ipynb
https://github.com/uber/causalml/blob/master/examples/validation_with_tmle.ipynb
https://github.com/uber/causalml/blob/master/examples/uplift_trees_with_synthetic_data.ipynb

causalml Documentation

4.3 More algorithms

4.3.1 Treatment optimization algorithms
We have developed Counterfactual Unit Selection and Counterfactual Value Estimator methods, please find the code
snippet below and details in the following notebooks:

* counterfactual_unit_selection.ipynb

* counterfactual_value_optimization.ipynb

from causalml.optimize import CounterfactualValueEstimator
from causalml.optimize import get_treatment_costs, get_actual_value

load data set and train test split

df_train, df_test = train_test_split(df)

train_idx = df_train.index

test_idx = df_test.index

some more code here to initiate and train the Model, and produce tm_pred

please refer to the counterfactual_value_optimization notebook for complete example

run the counterfactual calculation with TwoModel prediction

cve = CounterfactualValueEstimator(treatment=df_test['treatment_group_key'],
control_name='control',
treatment_names=conditions[1:],
y_proba=y_proba,
cate=tm_pred,
value=conversion_value_array[test_idx],
conversion_cost=cc_array[test_idx],
impression_cost=ic_array[test_idx])

cve_best_idx = cve.predict_best()

cve_best = [conditions[idx] for idx in cve_best_idx]

actual_is_cve_best = df.loc[test_idx, 'treatment_group_key'] == cve_best
cve_value = actual_value.loc[test_idx][actual_is_cve_best].mean()

labels = [
'Random allocation',
'Best treatment',
'T-Learner’',
'CounterfactualValueEstimator'

]

values = [
random_allocation_value,
best_ate_value,
tm_value,
cve_value

]

plot the result
plt.bar(labels, values)

4.3. More algorithms 17

https://github.com/uber/causalml/blob/master/examples/counterfactual_unit_selection.ipynb
https://github.com/uber/causalml/blob/master/examples/counterfactual_value_optimization.ipynb

causalml Documentation

—
- h =) =]

Mean actual value in testing set
%]

A P

g g

vl A &

P o

4.3.2 Instrumental variables algorithms

» 2-Stage Least Squares (2SLS): iv_nlsym_synthetic_data.ipynb

4.3.3 Neural network based algorithms

* CEVAE: cevae_example.ipynb

¢ DragonNet: dragonnet_example.ipynb

18 Chapter 4. Examples

https://github.com/uber/causalml/blob/master/examples/iv_nlsym_synthetic_data.ipynb
https://github.com/uber/causalml/blob/master/examples/cevae_example.ipynb
https://github.com/uber/causalml/blob/master/examples/dragonnet_example.ipynb

causalml Documentation

4.4 Interpretation

Please see Interpretable Causal ML section

4.5 Validation

Please see Validation section

4.6 Synthetic Data Generation Process

4.6.1 Single Simulation

from causalml.dataset import *

Generate synthetic data for single simulation
y, X, treatment, tau, b, e = synthetic_data(mode=1)
y, X, treatment, tau, b, e = simulate_nuisance_and_easy_treatment()

Generate predictions for single simulation
single_sim_preds = get_synthetic_preds(simulate_nuisance_and_easy_treatment, n=1000)

Generate multiple scatter plots to compare learner performance for a single simulation
scatter_plot_single_sim(single_sim_preds)

Visualize distribution of learner predictions for a single simulation
distr_plot_single_sim(single_sim_preds, kind='kde')

4.4. Interpretation 19

causalml Documentation

Actuals S Learner (LR} S Learner (XGB)
1.0 — Perfect Model —t= 1.0 — Perfect Model = —— Perfect Model
Predictions L . Predictions 7 2 . Ppredictions
0.8 0.8 ~
£06 §06 // g !
= = e -
Eoa4 Eoa4 T E o
,/
0.2) 0.2 — .
0.0 —~ 0.0 !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T Ledetus (LR) T Leafawe(XGB) X Leden (LR)
125 —— Pperfect Model — " — Perfect Model 125 —— Pperfect Model
Predictions 4 Predictions Predictions
1.00 o 1.00
£0.75 52 £0.75
¥ 050 B Zos0
&£ £ 0 =
0.25 0.25
-3 .,
000 000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X Lealeigrl(XGB) R Ledfia (LR) R LeaffiznlXGB)
3 — perfect Model i 1.5 — Perfect Mogel . — Perfect Model
Predictions. P . B Predictions. Predictions.
2 : T 5]
1.0 il
g 1 5 5
T o0 05 g0
£ & £
-t 0.0
. -5
2 ; .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Actual Actual
1.0 1.0
1.25 —— Perfect Model **
Predictions.
1.00 : 0.8 0.8
5075 0.6 0.6
%
£0.50 0.4 0.4
0.25 0.2 0.2
0.00 —
0.g 0.g
0.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0

4.6.2 Multiple Simulations

from causalml.dataset import *

Generalize performance summary over k simulations

num_simulations = 12

preds_summary = get_synthetic_summary(simulate_nuisance_and_easy_treatment, n=1000,..
—k=num_simulations)

Generate scatter plot of performance summary
scatter_plot_summary(preds_summary, k=num_simulations)

Generate bar plot of performance summary
bar_plot_summary (preds_summary, k=num_simulations)

20 Chapter 4. Examples

causalml Documentation

Learner Performance (averaged over k=12 simulations)
4.0

R Learner (XGB)
3.5
3.0

2.5

2.0

MSE

1.5

T Le.amer (XGB)
1.0

0.5 X Léarner (XGB)

.S Learner (XGB)
0.0 pctdals R Learmerdhivek¢eR)er (LR)
0.0 0.2 0.4 0.6 0.8
Abs % Error of ATE

Learner Performance (averaged over k=12 simulations)

4.0 WM Abs % Error of ATE
I MSE

KL Divergence
3.5

3.0
2.5
2.0
15
1.0

0.5

‘tausal Tree

4.6. Synthetic Data Generation Process

21

causalml Documentation

4.7 Sensitivity Analysis

For more details, please refer to the sensitivity_example_with_synthetic_data.ipynb notebook.

from causalml.metrics.sensitivity import Sensitivity

from causalml.metrics.sensitivity import SensitivitySelectionBias
from causalml.inference.meta import BaseXLearner

from sklearn.linear_model import LinearRegression

Calling the Base XLearner class and return the sensitivity analysis summary report
learner_x = BaseXLearner(LinearRegression())
sens_x = Sensitivity(df=df, inference_features=INFERENCE_FEATURES, p_col='pihat',
treatment_col=TREATMENT_COL, outcome_col=0OUTCOME_COL, ..

—learner=learner_x)
Here for Selection Bias method will use default one-sided confounding function and.
—alpha (quantile range of outcome values) input
sens_sumary_x = sens_x.sensitivity_analysis(methods=['Placebo Treatment',

'Random Cause',

'Subset Data',

'Random Replace',

'Selection Bias'], sample_size=0.5)

Selection Bias: Alignment confounding Function
sens_x_bias_alignment = SensitivitySelectionBias(df, INFERENCE_FEATURES, p_col='pihat',.
—treatment_col=TREATMENT_COL,

outcome_col=0UTCOME_COL, learner=learner_x,.,
—confound="alignment"',

alpha_range=None)
Plot the results by rsquare with partial r-square results by each individual features
sens_x_bias_alignment.plot(lls_x_bias_alignment, partial_rsqs_x_bias_alignment, type='r.
—squared', partial_rsqs=True)

22 Chapter 4. Examples

https://github.com/uber/causalml/blob/master/examples/sensitivity_example_with_synthetic_data.ipynb

causalml Documentation

0.775

0.750

0.725

0.700

0.675

0.650

0.625

0.600

—=0.050 -0.025 0.000 0.025 0050 0075 0100 0.125

4.8 Feature Selection

For more details, please refer to the feature_selection.ipynb notebook and the associated paper reference by Zhao,
Zhenyu, et al.

from causalml.feature_selection.filters import FilterSelect
from causalml.dataset import make_uplift_classification

define parameters for simulation

y_name = 'conversion'

treatment_group_keys = ['control', 'treatmentl']
n = 100000

n_classification_features = 50
n_classification_informative = 10
n_classification_repeated = 0
n_uplift_increase_dict = {'treatmentl': 8}
n_uplift_decrease_dict = {'treatmentl': 4}

(continues on next page)

4.8. Feature Selection 23

https://github.com/uber/causalml/blob/master/examples/feature_selection.ipynb

causalml Documentation

(continued from previous page)

delta_uplift_increase_dict {'treatmentl': 0.1}
delta_uplift_decrease_dict = {'treatmentl': -0.1}

make a synthetic uplift data set

random_seed = 20200808

df, X_names = make_uplift_classification(
treatment_name=treatment_group_keys,
y_name=y_name,
n_samples=n,
n_classification_features=n_classification_features,
n_classification_informative=n_classification_informative,
n_classification_repeated=n_classification_repeated,
n_uplift_increase_dict=n_uplift_increase_dict,
n_uplift_decrease_dict=n_uplift_decrease_dict,
delta_uplift_increase_dict = delta_uplift_increase_dict,
delta_uplift_decrease_dict = delta_uplift_decrease_dict,
random_seed=random_seed

Feature selection with Filter method

filter_f = FilterSelect()

method = 'F'

f_ imp = filter_f.get_importance(df, X_names, y_name, method,
treatment_group = 'treatmentl')

print(f_imp)

Use likelihood ratio test method

method = 'LR'

lr_imp = filter_f.get_importance(df, X_names, y_name, method,
treatment_group = 'treatmentl')

print(lr_imp)

Use KL divergence method

method = 'KL'

kl_imp = filter_f.get_importance(df, X_names, y_name, method,
treatment_group = 'treatmentl',
n_bins=10)

print(kl_imp)

24 Chapter 4. Examples

CHAPTER
FIVE

INTERPRETABLE CAUSAL ML

Causal ML provides methods to interpret the treatment effect models trained, where we provide more sample code in
feature_interpretations_example.ipynb notebook.

5.1 Meta-Learner Feature Importances

from causalml.inference.meta import BaseSRegressor, BaseTRegressor, BaseXRegressor,..
—.BaseRRegressor

slearner = BaseSRegressor (LGBMRegressor(), control_name='control')
slearner.estimate_ate(X, w_multi, y)
slearner_tau = slearner.fit_predict(X, w_multi, y)

model_tau_feature = RandomForestRegressor() # specify model for model_tau_feature

slearner.get_importance (X=X, tau=slearner_tau, model_tau_feature=model_tau_feature,
normalize=True, method='auto', features=feature_names)

Using the feature_importances_ method in the base learner (LGBMRegressor() in this.
—example)
slearner.plot_importance (X=X, tau=slearner_tau, normalize=True, method='auto')

Using elib's PermutationImportance
slearner.plot_importance (X=X, tau=slearner_tau, normalize=True, method='permutation")

Using SHAP
shap_slearner = slearner.get_shap_values(X=X, tau=slearner_tau)

Plot shap values without specifying shap_dict
slearner.plot_shap_values (X=X, tau=slearner_tau)

Plot shap values WITH specifying shap_dict
slearner.plot_shap_values(X=X, shap_dict=shap_slearner)

interaction_idx set to 'auto' (searches for feature with greatest approximate.
—interaction)
slearner.plot_shap_dependence(treatment_group="'treatment_ A",

feature_idx=1,

X=X,

(continues on next page)

25

https://github.com/uber/causalml/blob/master/examples/feature_interpretations_example.ipynb

causalml Documentation

(continued from previous page)

tau=slearner_tau,
interaction_idx="auto')

tiger
stars
quixotic
merciful
fireman
touch
clammy
adhesive
wrap
sweltering
change
lethal
damp
shelf

ngid
barbarous
playground
nonchalant
cute

rain

offer

eight
dependent
future

lip

treatment_A

0.0

26

Chapter 5. Interpretable Causal ML

causalml Documentation

figer

stars
guixotic
merciful
fireman
lip

wrap
clammy
sweltering
adhesive
change
touch
future
dependent
lethal
shelf
barbarous
offer

rain

playground

—0.4

—03

treatment_A

—0.2 —-0.1 0.0 0.1 0.z
SHAP value (impact on model output)

0.3

0.4

High

Feature value

5.1. Meta-Learner Feature Importances

27

causalml Documentation

{2
0.1
S
[
g™ 00
=
22
15}
[l —0.1
< 5
I
Ty
—0.2
—0.3
—0.4
0.0 02 04 0.& 0.8 1.0
Feature 1

5.2 Uplift Tree Visualization

from IPython.display import Image

from causalml.inference.tree import UpliftTreeClassifier, UpliftRandomForestClassifier
from causalml.inference.tree import uplift_tree_string, uplift_tree_plot

from causalml.dataset import make_uplift_classification

df, x_names = make_uplift_classification()
uplift_model = UpliftTreeClassifier(max_depth=5, min_samples_leaf=200, min_samples_
—treatment=50,

n_reg=100, evaluationFunction='KL', control_name=
- 'control')

uplift_model. fit(df[x_names].values,
treatment=df['treatment_group_key'].values,
y=df['conversion'].values)

graph = uplift_tree_plot(uplift_model.fitted_uplift_tree, x_names)
Image(graph.create_png())

28 Chapter 5. Interpretable Causal ML

causalml Documentation

feature_17 = -1.3785915096595742
impurity -0.0
total_sample 1600 (100.0%)
group_sample treatmentl: 782 control: 818
uplift score: 0.0127
uplift p_value 0.6106
validation uplift score 0.0127

True False

Please see below for how to read the plot, and uplift_tree_visualization.ipynb example notebook is provided in the repo.

5.3

feature_name > threshold: For non-leaf node, the first line is an inequality indicating the splitting rule of this
node to its children nodes.

impurity: the impurity is defined as the value of the split criterion function (such as KL, Chi, or ED) evaluated
at this current node

total_sample: sample size in this node.
group_sample: sample sizes by treatment groups

uplift score: treatment effect in this node, if there are multiple treatment, it indicates the maximum (signed) of
the treatment effects across all treatment vs control pairs.

uplift p_value: p value of the treatment effect in this node

validation uplift score: all the information above is static once the tree is trained (based on the trained trees),
while the validation uplift score represents the treatment effect of the testing data when the method fill() is used.
This score can be used as a comparison to the training uplift score, to evaluate if the tree has an overfitting issue.

Uplift Tree Feature Importances

pd.Series(uplift_model.feature_importances_, index=x_names).sort_values().plot(kind="'barh

]
—

figsize=(12,8))

5.3. Uplift Tree Feature Importances 29

https://github.com/uber/causalml/blob/master/examples/uplift_tree_visualization.ipynb

causalml Documentation

x18_uplift_increa s |
x4_informative N
x3_informative I
x2_informative NI
x16_increase_mix N
x1_informative NN
x15_uplift_increase Il
x14 uplift_increase
x13_increase_mix Il
x3_irrelevant M
x6_irrelevant
x5_informative
%19 _increase_mix
x7_irrelevant
x8_irrelevant
x11_uplift_increase
x12_uplift_increase
X17_uplift_increase
x10_irrelevant
0.0 0.1 0.2 0.3 0.4

30 Chapter 5. Interpretable Causal ML

CHAPTER
SIX

VALIDATION

Estimation of the treatment effect cannot be validated the same way as regular ML predictions because the true value is
not available except for the experimental data. Here we focus on the internal validation methods under the assumption
of unconfoundedness of potential outcomes and the treatment status conditioned on the feature set available to us.

6.1 Validation with Multiple Estimates

We can validate the methodology by comparing the estimates with other approaches, checking the consistency of
estimates across different levels and cohorts.

6.1.1 Model Robustness for Meta Algorithms
In meta-algorithms we can assess the quality of user-level treatment effect estimation by comparing estimates from
different underlying ML algorithms. We will report MSE, coverage (overlapping 95% confidence interval), uplift

curve. In addition, we can split the sample within a cohort and compare the result from out-of-sample scoring and
within-sample scoring.

6.1.2 User Level/Segment Level/Cohort Level Consistency

We can also evaluate user-level/segment level/cohort level estimation consistency by conducting T-test.

6.1.3 Stability between Cohorts

Treatment effect may vary from cohort to cohort but should not be too volatile. For a given cohort, we will compare
the scores generated by model fit to another score with the ones generated by its own model.

6.2 Validation with Synthetic Data Sets

We can test the methodology with simulations, where we generate data with known causal and non-causal links between
the outcome, treatment and some of confounding variables.

We implemented the following sets of synthetic data generation mechanisms based on [18]:

31

causalml Documentation

6.2.1 Mechanism 1

This generates a complex outcome regression model with easy treatment effect with input variables
X; ~ Unif(0,1)4.
The treatment flag is a binomial variable, whose d.g.p. is:

:math:' P(W_i = 1| X_i) = trim_{0.1}(sin(pi X_{il} X_{i2})

With :
trim,(z) = max(n, min(z, 1 — 7))

The outcome variable is:

yi = sin(m X X2) + 2(Xiz — 0.5)% + Xyg + 0.5X;5 + (Wi — 0.5) (X1 + Xi2)/2 + €

6.2.2 Mechanism 2

This simulates a randomized trial. The input variables are generated by X; ~ N (0, Iixq)
The treatment flag is generated by a fair coin flip:

PW; =1X;)=0.5
The outcome variable is

yi = maz(X;1 + Xiz, Xi3,0) + maz (X + Xis5,0) + (Wi — 0.5)(X;1 + log(1 + eXiz))

6.2.3 Mechanism 3
This one has an easy propensity score but a difficult control outcome. The input variables follow X; ~ N (0, Ijxq)
The treatment flag is a binomial variable, whose d.g.p is:

P(Wl - 1|X’) T Iltexp Xiz+Xi3

The outcome variable is:

y; = 2log(1 + eXutXia+Xis) 1 (W, — 0.5)

32 Chapter 6. Validation

causalml Documentation

6.2.4 Mechanism 4

This contains an unrelated treatment arm and control arm, with input data generated by X; ~ N (0, Ijxq)-

The treatment flag is a binomial variable whose d.g.p. is:

— _ 1
P(W’ - 1|Xi) T 14exp —Xi1+exp — Xz

The outcome variable is:

Yi
% (max(X“ + X0+ X3, 0)+max(X4+ X5, 0)) +(W;—0.5)(maz(X;1+Xio+Xi3,0) —maz (X4, X;5,0))

6.3 Validation with Uplift Curve (AUUC)

We can validate the estimation by evaluating and comparing the uplift gains with AUUC (Area Under Uplift Curve), it
calculates cumulative gains. Please find more details in meta_learners_with_synthetic_data.ipynb example notebook.

from causalml.dataset import *
from causalml.metrics import *
Single simulation
train_preds, valid_preds = get_synthetic_preds_holdout(simulate_nuisance_and_easy_
—treatment,
n=50000,
valid_size=0.2)
Cumulative Gain AUUC values for a Single Simulation of Validaiton Data
get_synthetic_auuc(valid_preds)

6.3. Validation with Uplift Curve (AUUC) 33

https://github.com/uber/causalml/blob/master/examples/meta_learners_with_synthetic_data.ipynb

causalml Documentation

Learner cum_gain_auuc
Actuals 4.942671%e+06
R Learner (LR) 4.941699e+06

T Learner (LR) 4.941643e+06

B N O O

X Learner (LR) 4.941643e+06
1 S Learner (XGB) 4.723843e+06
X Learner (XGB) 4.580028e+06
T Learner (XGB) 4.446320e+06

R Learner (XGB) 4.364945e+06

0 =~ W o

Random 4.010939e+06

34 Chapter 6. Validation

causalml Documentation

m— Artuals
20000
mm= S learner (XGB)
T Learmner {LR)
=== T |earner (XGB)
17500 e ¥ Leamner (LR}
= ¥ Leamner (XGE)
=== [Leamner (LR)
15000 == g | samer (XGE)
Random
12500
e
mo 10000
]
7500
5000
2500
0
i) G000 100010 150010 20000 25000 30000 35000 40000
Population

For data with skewed treatment, it is sometimes advantageous to use Targeted maximum likelihood estimation (TMLE)
Jor ATE to generate the AUUC curve for validation, as TMLE provides a more accurate estimation of ATE. Please find
validation_with_tmle.ipynb example notebook for details.

6.4 Validation with Sensitivity Analysis

Sensitivity analysis aim to check the robustness of the unconfoundeness assumption. If there is hidden bias (unobserved
confounders), it detemineds how severe whould have to be to change conclusion by examine the average treatment effect
estimation.

We implemented the following methods to conduct sensitivity analysis:

6.4. Validation with Sensitivity Analysis 35

https://github.com/uber/causalml/blob/master/examples/validation_with_tmle.ipynb

causalml Documentation

6.4.1 Placebo Treatment

Replace treatment with a random variable.

6.4.2 Irrelevant Additional Confounder

Add a random common cause variable.

6.4.3 Subset validation

Remove a random subset of the data.

6.4.4 Random Replace

Random replace a covariate with an irrelevant variable.

6.4.5 Selection Bias

Blackwell(2013) <https://www.mattblackwell.org/files/papers/sens.pdf> introduced an approach to sensitivity
analysis for causal effects that directly models confounding or selection bias.

One Sided Confounding Function: here as the name implies, this function can detect sensitivity to one-sided selection
bias, but it would fail to detect other deviations from ignobility. That is, it can only determine the bias resulting from
the treatment group being on average better off or the control group being on average better off.

Alignment Confounding Function: this type of bias is likely to occur when units select into treatment and control
based on their predicted treatment effects

The sensitivity analysis is rigid in this way because the confounding function is not identified from the data, so that
the causal model in the last section is only identified conditional on a specific choice of that function. The goal of the
sensitivity analysis is not to choose the “correct” confounding function, since we have no way of evaluating this
correctness. By its very nature, unmeasured confounding is unmeasured. Rather, the goal is to identify plausible
deviations from ignobility and test sensitivity to those deviations. The main harm that results from the incorrect
specification of the confounding function is that hidden biases remain hidden.

36 Chapter 6. Validation

CHAPTER
SEVEN

CAUSALML PACKAGE

7.1 Submodules

7.2 causalml.inference.tree module

class causalml.inference.tree.CausalMSE
Bases: sklearn.tree._criterion.RegressionCriterion

Causal Tree mean squared error impurity criterion.

CausalTreeMSE = right_effect + left_effect

where,

effect = alpha * tau"2 - (1 - alpha) * (1 + train_to_est_ratio) * (VAR_tr/ p + VAR _cont/ (1 - p))

class causalml.inference.tree.CausalTreeRegressor (ate_alpha=0.05, control_name=0,
max_depth=None, min_samples_leaf=100,
random_state=None)
Bases: object

A Causal Tree regressor class.
The Causal Tree is a decision tree regressor with a split criteria for treatment effects instead of outputs.
Details are available at Athey and Imbens (2015) (https://arxiv.org/abs/1504.01132)

bootstrap (X, treatment, y, size=10000)
Runs a single bootstrap.

Fits on bootstrapped sample, then predicts on whole population.

Parameters

e X (np.matrix) — a feature matrix

* treatment (np.array) — a treatment vector

e y (np.array) — an outcome vector

e size (int, optional) - bootstrap sample size
Returns bootstrap predictions
Return type (np.array)

estimate_ate(X, treatment, y)
Estimate the Average Treatment Effect (ATE).

Parameters

37

https://arxiv.org/abs/1504.01132

causalml Documentation

e X (np.matrix) — a feature matrix
e treatment (np.array) — a treatment vector
e y (np.array) — an outcome vector
Returns The mean and confidence interval (LB, UB) of the ATE estimate.

fit (X, treatment, y)
Fit the Causal Tree model

Parameters
e X (np.matrix) — a feature matrix
e treatment (np.array) — a treatment vector
e y (np.array) — an outcome vector

Returns self (CausalTree object)

fit_predict(X, treatment, y, return_ci=False, n_bootstraps=1000, bootstrap_size=10000, verbose=False)
Fit the Causal Tree model and predict treatment effects.

Parameters
e X (np.matrix) — a feature matrix
* treatment (np.array) — a treatment vector
e y (np.array) — an outcome vector
e return_ci (bool) — whether to return confidence intervals
* n_bootstraps (int) — number of bootstrap iterations
¢ bootstrap_size (int) — number of samples per bootstrap
¢ verbose (str)— whether to output progress logs
Returns
* te (numpy.ndarray): Predictions of treatment effects.
¢ te_lower (numpy.ndarray, optional): lower bounds of treatment effects
* te_upper (numpy.ndarray, optional): upper bounds of treatment effects
Return type (tuple)

predict(X)
Predict treatment effects.

Parameters X (np.matrix) — a feature matrix
Returns Predictions of treatment effects.
Return type (numpy.ndarray)

class causalml.inference.tree.DecisionTree(classes_, col=- 1, value=None, trueBranch=None,
falseBranch=None, results=None, summary=None,
maxDiffTreatment=None, maxDiffSign=1.0,
nodeSummary=None, backupResults=None,
bestTreatment=None, upliftScore=None, matchScore=None)
Bases: object

Tree Node Class

Tree node class to contain all the statistics of the tree node.

38 Chapter 7. causalml package

causalml Documentation

Parameters

classes (1ist of str)— A list of the control and treatment group names.

col (int, optional (default = -1))-The column index for splitting the tree node to
children nodes.

value (float, optional (default = None))-The value of the feature column to split
the tree node to children nodes.

trueBranch (object of DecisionTree) — The true branch tree node (feature > value).
falseBranch (object of DecisionTree)— The false branch tree node (feature > value).

results (list of float)- The classification probability P(Y=1|T) for each of the control
and treatment groups in the tree node.

summary (list of list)— Summary statistics of the tree nodes, including impurity, sam-
ple size, uplift score, etc.

maxDiffTreatment (int) — The treatment index generating the maximum difference be-
tween the treatment and control groups.

maxDiffSign (float) — The sign of the maximum difference (1. or -1.).

nodeSummary (I1ist of list)— Summary statistics of the tree nodes [P(Y=1|T), N(T)],
where y_mean stands for the target metric mean and n is the sample size.

backupResults (1ist of float)— The positive probabilities in each of the control and
treatment groups in the parent node. The parent node information is served as a backup for
the children node, in case no valid statistics can be calculated from the children node, the
parent node information will be used in certain cases.

bestTreatment (int) — The treatment index providing the best uplift (treatment effect).

upliftScore (1ist)— The uplift score of this node: [max_Diff, p_value], where max_Diff
stands for the maximum treatment effect, and p_value stands for the p_value of the treatment
effect.

matchScore (float) — The uplift score by filling a trained tree with validation dataset or
testing dataset.

class causalml.inference.tree.UpliftRandomForestClassifier (control_name, n_estimators=10,
max_features=10, random_state=None,
max_depth=>5, min_samples_leaf=100,
min_samples_treatment=10, n_reg=10,

evaluationFunction="KL',
normalization=True, n_jobs=- 1)

Bases: object

Uplift Random Forest for Classification Task.

Parameters

n_estimators (integer, optional (default=10))-The number of trees in the uplift
random forest.

evaluationFunction (string) — Choose from one of the models: ‘KL’, ‘ED’, ‘Chi’,
‘CTS’, ‘DDP’.

max_features (int, optional (default=10))— The number of features to consider
when looking for the best split.

7.2. causalml.inference.tree module

39

causalml Documentation

e random_state (int, RandomState instance or None (default=None)) — A ran-
dom seed or np.random.RandomState to control randomness in building the trees and forest.

* max_depth (int, optional (default=5))- The maximum depth of the tree.

e min_samples_leaf (int, optional (default=100))-The minimum number of sam-
ples required to be split at a leaf node.

e min_samples_treatment (int, optional (default=10))-The minimum number of
samples required of the experiment group to be split at a leaf node.

* n_reg (int, optional (default=10)) — The regularization parameter defined in
Rzepakowski et al. 2012, the weight (in terms of sample size) of the parent node influence
on the child node, only effective for ‘KL, ‘ED’, ‘Chi’, ‘CTS’ methods.

» control_name (string)— The name of the control group (other experiment groups will be
regarded as treatment groups)

e normalization (boolean, optional (default=True)) — The normalization factor
defined in Rzepakowski et al. 2012, correcting for tests with large number of splits and
imbalanced treatment and control splits

* n_jobs (int, optional (default=-1))- The parallelization parameter to define how
many parallel jobs need to be created. This is passed on to joblib library for parallelizing
uplift-tree creation.

e Outputs —

» df_res (pandas dataframe) — A user-level results dataframe containing the estimated
individual treatment effect.

static bootstrap(X, treatment, y, tree)

fit (X, treatment, y)
Fit the UpliftRandomForestClassifier.

Parameters

* X (ndarray, shape = [num_samples, num_features])— An ndarray of the covari-
ates used to train the uplift model.

* treatment (array-like, shape = [num_samples])— An array containing the treat-
ment group for each unit.

* y (array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

predict (X, full_output=False)
Returns the recommended treatment group and predicted optimal probability conditional on using the rec-
ommended treatment group.

Parameters

* X (ndarray, shape = [num_samples, num_features])— An ndarray of the covari-
ates used to train the uplift model.

e full_output (bool, optional (default=False)) — Whether the UpliftTree algo-
rithm returns upliftScores, pred_nodes alongside the recommended treatment group and
p_hat in the treatment group.

Returns

40

Chapter 7. causalml package

causalml Documentation

* y_pred_list (ndarray, shape = (num_samples, num_treatments])) — An ndarray containing
the predicted treatment effect of each treatment group for each sample

o df_res (DataFrame, shape = [num_samples, (num_treatments * 2 + 3)]) —If full_output is
True, a DataFrame containing the predicted outcome of each treatment and control group,
the treatment effect of each treatment group, the treatment group with the highest treatment
effect, and the maximum treatment effect for each sample.

class causalml.inference.tree.UpliftTreeClassifier (control_name, max_features=None,
max_depth=3, min_samples_leaf=100,
min_samples_treatment=10, n_reg=100,
evaluationFunction='KL', normalization=True,
random_state=None)
Bases: object

Uplift Tree Classifier for Classification Task.

A uplift tree classifier estimates the individual treatment effect by modifying the loss function in the classification
trees.

The uplift tree classifier is used in uplift random forest to construct the trees in the forest.
Parameters

¢ evaluationFunction (string) — Choose from one of the models: ‘KL, ‘ED’, ‘Chi’,
‘CTS’, ‘DDP".

e max_features (int, optional (default=None))-The number of features to consider
when looking for the best split.

* max_depth (int, optional (default=3))- The maximum depth of the tree.

e min_samples_leaf (int, optional (default=100))-The minimum number of sam-
ples required to be split at a leaf node.

e min_samples_treatment (int, optional (default=10))-The minimum number of
samples required of the experiment group to be split at a leaf node.

* n_reg (int, optional (default=100)) — The regularization parameter defined in
Rzepakowski et al. 2012, the weight (in terms of sample size) of the parent node influence
on the child node, only effective for ‘KL, ‘ED’, ‘Chi’, ‘CTS’ methods.

* control_name (string)— The name of the control group (other experiment groups will be
regarded as treatment groups).

e normalization (boolean, optional (default=True)) — The normalization factor
defined in Rzepakowski et al. 2012, correcting for tests with large number of splits and
imbalanced treatment and control splits.

e random_state (int, RandomState instance or None (default=None)) — A ran-
dom seed or np.random.RandomState to control randomness in building a tree.

static classify(observations, tree, dataMissing=False)
Classifies (prediction) the observations according to the tree.

Parameters

* observations (1ist of 1ist)- The internal data format for the training data (combin-
ing X, Y, treatment).

¢ dataMissing (boolean, optional (default = False)) — An indicator for if data
are missing or not.

Returns The results in the leaf node.

7.2. causalml.inference.tree module 41

causalml Documentation

Return type tree.results, tree.upliftScore

static divideSet (X, treatment_idx, y, column, value)
Tree node split.

Parameters

* X(ndarray, shape = [num_samples, num_features])— An ndarray of the covari-
ates used to train the uplift model.

e treatment_idx (array-like, shape = [num_samples])— An array containing the
treatment group index for each unit.

* y (array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

¢ column (int) — The column used to split the data.
* value (float or int) - The value in the column for splitting the data.

Returns (X_1, X_r, treatment_l, treatment_r, y_l, y_r) — The covariates, treatments and out-
comes of left node and the right node.

Return type list of ndarray

static evaluate_CTS (nodeSummary)
Calculate CTS (conditional treatment selection) as split evaluation criterion for a given node.

Parameters nodeSummary (1ist of list) — The tree node summary statistics, [P(Y=1|T),
N(T)], produced by tree_node_summary() method.

Returns d_res
Return type Chi-Square

static evaluate_Chi (nodeSummary)
Calculate Chi-Square statistic as split evaluation criterion for a given node.

Parameters nodeSummary (dictionary) — The tree node summary statistics, produced by
tree_node_summary() method.

Returns d_res
Return type Chi-Square

static evaluate_DDP (nodeSummary)
Calculate Delta P as split evaluation criterion for a given node.

Parameters nodeSummary (1ist of list) — The tree node summary statistics, [P(Y=1|T),
N(T)], produced by tree_node_summary() method.

Returns d_res
Return type Delta P

static evaluate_ED(nodeSummary)
Calculate Euclidean Distance as split evaluation criterion for a given node.

Parameters nodeSummary (dictionary) — The tree node summary statistics, produced by
tree_node_summary() method.

Returns d_res
Return type Euclidean Distance

static evaluate_KL (nodeSummary)
Calculate KL Divergence as split evaluation criterion for a given node.

42 Chapter 7. causalml package

causalml Documentation

Parameters nodeSummary (1ist of list) — The tree node summary statistics, [P(Y=1|T),
N(T)], produced by tree_node_summary() method.

Returns d_res
Return type KL Divergence

fill (X, treatment, y)
Fill the data into an existing tree. This is a higher-level function to transform the original data inputs into
lower level data inputs (list of list and tree).

Parameters

* X (ndarray, shape = [num_samples, num_features])— An ndarray of the covari-
ates used to train the uplift model.

* treatment (array-like, shape = [num_samples])— An array containing the treat-
ment group for each unit.

* y (array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

Returns self
Return type object

fillTree (X, treatment_idx, y, tree)
Fill the data into an existing tree. This is a lower-level function to execute on the tree filling task.

Parameters

* X(ndarray, shape = [num_samples, num_features])— An ndarray of the covari-
ates used to train the uplift model.

e treatment_idx (array-like, shape = [num_samples])— An array containing the
treatment group index for each unit.

* y(array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

* tree (object) — object of DecisionTree class
Returns self
Return type object

fit (X, treatment, y)
Fit the uplift model.

Parameters

* X(ndarray, shape = [num_samples, num_features])— An ndarray of the covari-
ates used to train the uplift model.

* treatment (array-like, shape = [num_samples])— An array containing the treat-
ment group for each unit.

* y(array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

Returns self
Return type object

group_uniqueCounts (treatment_idx, y)
Count sample size by experiment group.

7.2. causalml.inference.tree module 43

causalml Documentation

Parameters

e treatment_idx (array-like, shape = [num_samples])— An array containing the
treatment group index for each unit.

e y (array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

Returns results — The negative and positive outcome sample sizes for each of the control and
treatment groups.

Return type list of list

growDecisionTreeFrom (X, treatment_idx, y, max_depth=10, min_samples_leaf=100, depth=1,
min_samples_treatment=10, n_reg=100, parentNodeSummary=None)
Train the uplift decision tree.

Parameters

* X(ndarray, shape = [num_samples, num_features])— An ndarray of the covari-
ates used to train the uplift model.

e treatment_idx (array-like, shape = [num_samples])— An array containing the
treatment group idx for each unit.

e y (array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

e max_depth (int, optional (default=10))- The maximum depth of the tree.

e min_samples_leaf (int, optional (default=100)) — The minimum number of
samples required to be split at a leaf node.

e depth (int, optional (default = 1))- The current depth.

e min_samples_treatment (int, optional (default=10))- The minimum number
of samples required of the experiment group to be split at a leaf node.

* n_reg (int, optional (default=10)) — The regularization parameter defined in
Rzepakowski et al. 2012, the weight (in terms of sample size) of the parent node influ-
ence on the child node, only effective for ‘KL, ‘ED’, ‘Chi’, ‘CTS’ methods.

e parentNodeSummary (dictionary, optional (default = None)) — Node sum-
mary statistics of the parent tree node.

Returns
Return type object of DecisionTree class

normI(n_c: int, n_c_left: int, n_t: list, n_t_left: list, alpha: float = 0.9) — float
Normalization factor.

Parameters

¢ currentNodeSummary (list of list) — The summary statistics of the current tree
node, [P(Y=1|T), N(T)].

e leftNodeSummary (1ist of list) — The summary statistics of the left tree node,
[P(Y=1]T), N(T)].

¢ alpha (float) — The weight used to balance different normalization parts.
Returns norm_res — Normalization factor.

Return type float

44 Chapter 7. causalml package

causalml Documentation

predict(X)
Returns the recommended treatment group and predicted optimal probability conditional on using the rec-
ommended treatment group.

Parameters X (ndarray, shape = [num_samples, num_features])— An ndarray of the
covariates used to train the uplift model.

Returns pred — An ndarray of predicted treatment effects across treatments.
Return type ndarray, shape = [num_samples, num_treatments]

prune (X, treatment, y, minGain=0.0001, rule="maxAbsDiff")
Prune the uplift model. :param X: An ndarray of the covariates used to train the uplift model. :type X:
ndarray, shape = [num_samples, num_features] :param treatment: An array containing the treatment group
for each unit. :type treatment: array-like, shape = [num_samples] :param y: An array containing the out-
come of interest for each unit. :type y: array-like, shape = [num_samples] :param minGain: The minimum
gain required to make a tree node split. The children

tree branches are trimmed if the actual split gain is less than the minimum gain.

Parameters rule (string, optional (default = ‘maxAbsDiff')) — The prune rules.
Supported values are ‘maxAbsDiff” for optimizing the maximum absolute difference, and
‘bestUplift’ for optimizing the node-size weighted treatment effect.

Returns self

Return type object

pruneTree (X, treatment_idx, y, tree, rule="maxAbsDiff’, minGain=0.0, n_reg=0,
parentNodeSummary=None)

Prune one single tree node in the uplift model. :param X: An ndarray of the covariates used to train the uplift
model. :type X: ndarray, shape = [num_samples, num_features] :param treatment_idx: An array containing
the treatment group index for each unit. :type treatment_idx: array-like, shape = [num_samples] :param
y: An array containing the outcome of interest for each unit. :type y: array-like, shape = [num_samples]
:param rule: The prune rules. Supported values are ‘maxAbsDiff” for optimizing the maximum absolute
difference, and

‘bestUplift’ for optimizing the node-size weighted treatment effect.

Parameters

e minGain (float, optional (default = 0.))-The minimum gain required to make
a tree node split. The children tree branches are trimmed if the actual split gain is less than
the minimum gain.

* n_reg (int, optional (default=0)) — The regularization parameter defined in
Rzepakowski et al. 2012, the weight (in terms of sample size) of the parent node influ-
ence on the child node, only effective for ‘KL, ‘ED’, ‘Chi’, ‘CTS’ methods.

e parentNodeSummary (1ist of list, optional (default = None))- Node sum-
mary statistics, [P(Y=1|T), N(T)] of the parent tree node.

Returns self
Return type object
tree_node_summary (treatment_idx, y, min_samples_treatment=10, n_reg=100,

parentNodeSummary=None)
Tree node summary statistics.

Parameters

7.2.

causalml.inference.tree module 45

causalml Documentation

e treatment_idx (array-like, shape = [num_samples])— An array containing the
treatment group index for each unit.

* y (array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

e min_samples_treatment (int, optional (default=10))- The minimum number
of samples required of the experiment group t be split at a leaf node.

* n_reg (int, optional (default=10)) — The regularization parameter defined in
Rzepakowski et al. 2012, the weight (in terms of sample size) of the parent node influ-
ence on the child node, only effective for ‘KL, ‘ED’, ‘Chi’, ‘CTS’ methods.

» parentNodeSummary (1ist of list)— The positive probabilities and sample sizes of
each of the control and treatment groups in the parent node.

Returns nodeSummary — The positive probabilities and sample sizes of each of the control and
treatment groups in the current node.

Return type list of list

uplift_classification_results(treatment_idx, y)
Classification probability for each treatment in the tree node.

Parameters

e treatment_idx (array-like, shape = [num_samples])— An array containing the
treatment group index for each unit.

* y (array-like, shape = [num_samples])— An array containing the outcome of in-
terest for each unit.

Returns res — The positive probabilities P(Y = 1) of each of the control and treatment groups
Return type list of list

causalml.inference.tree.cat_continuous (x, granularity='"Medium")
Categorize (bin) continuous variable based on percentile.

Parameters
e x (1ist) — Feature values.

e granularity (string, optional, (default = 'Medium'))— Control the granularity
of the bins, optional values are: ‘High’, ‘Medium’, ‘Low’.

Returns res — List of percentile bins for the feature value.
Return type list

causalml.inference.tree.cat_group(dfx, kpix, n_group=10)
Category Reduction for Categorical Variables

Parameters
» dfx (dataframe) — The inputs data dataframe.
e kpix (string) — The column of the feature.

* n_group (int, optional (default = 10))- The number of top category values to be
remained, other category values will be put into “Other”.

Returns

Return type The transformed categorical feature value list.

46 Chapter 7. causalml package

causalml Documentation

causalml.inference.tree.cat_transform(dfx, kpix, kpil)
Encoding string features.

Parameters
» dfx (dataframe) — The inputs data dataframe.
e kpix (string) — The column of the feature.
e kpil (1ist)— The list of feature names.
Returns
» dfx (DataFrame) — The updated dataframe containing the encoded data.
* kpil (list) — The updated feature names containing the new dummy feature names.

causalml.inference.tree.cv_fold_index(n, i, k, random_seed=2018)
Encoding string features.

Parameters
» dfx (dataframe) — The inputs data dataframe.
e kpix (string) — The column of the feature.
e kpil (1ist)— The list of feature names.
Returns
» dfx (DataFrame) — The updated dataframe containing the encoded data.
* kpil (/ist) — The updated feature names containing the new dummy feature names.

causalml.inference.tree.kpi_transform(dfx, kpi_combo, kpi_combo_new)
Feature transformation from continuous feature to binned features for a list of features

Parameters
» dfx (DataFrame) — DataFrame containing the features.
e kpi_combo (1ist of string)— List of feature names to be transformed

e kpi_combo_new (list of string)- Listof new feature names to be assigned to the trans-
formed features.

Returns dfx — Updated DataFrame containing the new features.
Return type DataFrame

causalml.inference.tree.uplift_tree_plot (decisionTree, x_names)
Convert the tree to dot graph for plots.

Parameters
» decisionTree (object) — object of DecisionTree class
e x_names (1ist) — List of feature names

Returns

Return type Dot class representing the tree graph.

causalml.inference.tree.uplift_tree_string(decisionTree, x_names)
Convert the tree to string for print.

Parameters

* decisionTree (object) — object of DecisionTree class

7.2. causalml.inference.tree module

47

causalml Documentation

e x_names (1ist) — List of feature names

Returns

Return type A string representation of the tree.

7.3 causalml.inference.meta module

class causalml.inference.meta.BaseDRLearner (learner=None, control_outcome_learner=None,

treatment_outcome_learner=None,
treatment_effect_learner=None, ate_alpha=0.05,
control_name=0)

Bases: causalml.inference.meta.base.BaselLearner

A parent class for DR-learner regressor classes.

A DR-learner estimates treatment effects with machine learning models.

Details of DR-learner are available at Kennedy (2020) (https://arxiv.org/abs/2004.14497).

estimate_ate(X, treatment, y, p=None, bootstrap_ci=False, n_bootstraps=1000, bootstrap_size=10000,

seed=None)

Estimate the Average Treatment Effect (ATE).

Parameters

X (np.matrix or np.array or pd.Dataframe) - a feature matrix
treatment (np.array or pd.Series)— atreatment vector
y (np.array or pd.Series)— an outcome vector

p (np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

bootstrap_ci (bool) — whether run bootstrap for confidence intervals
n_bootstraps (int) — number of bootstrap iterations
bootstrap_size (int) — number of samples per bootstrap

seed (int) — random seed for cross-fitting

Returns The mean and confidence interval (LB, UB) of the ATE estimate.

fit (X, treatment, y, p=None, seed=None)
Fit the inference model.

Parameters

X (np.matrix or np.array or pd.Dataframe) - a feature matrix
treatment (np.array or pd.Series)— atreatment vector
Yy (np.array or pd.Series)— an outcome vector

p (np.ndarray or pd.Series or dict, optional)— an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

seed (int) — random seed for cross-fitting

48

Chapter 7. causalml package

https://arxiv.org/abs/2004.14497

causalml Documentation

fit_predict(X, treatment, y, p=None, return_ci=False, n_bootstraps=1000, bootstrap_size=10000,
return_components=False, verbose=True, seed=None)
Fit the treatment effect and outcome models of the R learner and predict treatment effects.

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series) - atreatment vector
e y(np.array or pd.Series)— an outcome vector

* p(np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

e return_ci (bool) — whether to return confidence intervals
* n_bootstraps (int) — number of bootstrap iterations
* bootstrap_size (int) — number of samples per bootstrap

e return_components (bool, optional) - whether to return outcome for treatment and
control seperately

» verbose (str) — whether to output progress logs
¢ seed (int) — random seed for cross-fitting
Returns

Predictions of treatment effects. Output dim: [n_samples, n_treatment] If return_ci,
returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment], UB [n_samples,
n_treatment]

Return type (numpy.ndarray)

predict (X, treatment=None, y=None, p=None, return_components=False, verbose=True)
Predict treatment effects.

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series, optional) - atreatment vector
* y(np.array or pd.Series, optional)— an outcome vector
e verbose (bool, optional)— whether to output progress logs
Returns Predictions of treatment effects.
Return type (numpy.ndarray)

class causalml.inference.meta.BaseDRRegressor (learner=None, control_outcome_learner=None,
treatment_outcome_learner=None,
treatment_effect_learner=None, ate_alpha=0.05,
control_name=0)
Bases: causalml.inference.meta.drlearner.BaseDRLearner

A parent class for DR-learner regressor classes.

7.3. causalml.inference.meta module 49

causalml Documentation

class causalml.inference.meta.BaseRClassifier (outcome_learner=None, effect_learner=None, propen-
sity_learner=LogisticRegressionCV(Cs=array([1.00230524,
2.15608891, 4.63802765, 9.97700064]),
cv=StratifiedKFold(n_splits=4, random_state=42,
shuffle=True), l1_ratios=array([0.001, 0.33366667,
0.66633333, 0.999]), penalty='"elasticnet’,
random_state=42, solver='saga’), ate_alpha=0.05,
control_name=0, n_fold=5, random_state=None)

Bases: causalml.inference.meta.rlearner.BaseRLearner

A parent class for R-learner classifier classes.

fit (X, treatment, y, p=None, sample_weight=None, verbose=True)
Fit the treatment effect and outcome models of the R learner.

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series) - atreatment vector
e y(np.array or pd.Series)— an outcome vector

* p(np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

e sample_weight (np.array or pd.Series, optional) - an array of sample weights
indicating the weight of each observation for effect_learner. If None, it assumes equal
weight.

¢ verbose (bool, optional)— whether to output progress logs

predict (X, p=None)
Predict treatment effects.

Parameters X (np.matrix or np.array or pd.Dataframe) - a feature matrix
Returns Predictions of treatment effects.
Return type (numpy.ndarray)

class causalml.inference.meta.BaseRLearner (learner=None, outcome_learner=None,
effect_learner=None, propen-
sity_learner=LogisticRegressionCV(Cs=array([1.00230524,
2.15608891, 4.63802765, 9.97700064]),
cv=StratifiedKFold(n_splits=4, random_state=42,
shuffle=True), l1_ratios=array([0.001, 0.33366667,
0.66633333, 0.999]), penalty='elasticnet’,
random_state=42, solver='saga’), ate_alpha=0.05,
control_name=0, n_fold=5, random_state=None)

Bases: causalml.inference.meta.base.BaselLearner

A parent class for R-learner classes.
An R-learner estimates treatment effects with two machine learning models and the propensity score.
Details of R-learner are available at Nie and Wager (2019) (https://arxiv.org/abs/1712.04912).

estimate_ate(X, treatment, y, p=None, sample_weight=None, bootstrap_ci=False, n_bootstraps=1000,
bootstrap_size=10000)
Estimate the Average Treatment Effect (ATE).

50 Chapter 7. causalml package

https://arxiv.org/abs/1712.04912

causalml Documentation

Parameters

X (np.matrix or np.array or pd.Dataframe)— a feature matrix
treatment (np.array or pd.Series)— atreatment vector
Yy (np.array or pd.Series)— an outcome vector

p (np.ndarray or pd.Series or dict, optional)— an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

sample_weight (np.array or pd.Series, optional) - an array of sample weights
indicating the weight of each observation for effect_learner. If None, it assumes equal
weight.

bootstrap_ci (bool) — whether run bootstrap for confidence intervals
n_bootstraps (int) — number of bootstrap iterations

bootstrap_size (int) — number of samples per bootstrap

Returns The mean and confidence interval (LB, UB) of the ATE estimate.

fit (X, treatment, y, p=None, sample_weight=None, verbose=True)
Fit the treatment effect and outcome models of the R learner.

Parameters

fit_predict(

X (np.matrix or np.array or pd.Dataframe) - a feature matrix
treatment (np.array or pd.Series)— atreatment vector
y (np.array or pd.Series)— an outcome vector

p (np.ndarray or pd.Series or dict, optional)— an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

sample_weight (np.array or pd.Series, optional)- an array of sample weights
indicating the weight of each observation for effect_learner. If None, it assumes equal
weight.

verbose (bool, optional)— whether to output progress logs

X, treatment, y, p=None, sample_weight=None, return_ci=False, n_bootstraps=1000,
bootstrap_size=10000, verbose=True)

Fit the treatment effect and outcome models of the R learner and predict treatment effects.

Parameters

X (np.matrix or np.array or pd.Dataframe) - a feature matrix
treatment (np.array or pd.Series)— atreatment vector
Yy (np.array or pd.Series)— an outcome vector

p (np.ndarray or pd.Series or dict, optional)— an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

7.3. causalml.inference.meta module 51

causalml Documentation

* sample_weight (np.array or pd.Series, optional)— an array of sample weights
indicating the weight of each observation for effect_learner. If None, it assumes equal
weight.

e return_ci (bool) — whether to return confidence intervals

* n_bootstraps (int) — number of bootstrap iterations

¢ bootstrap_size (int) — number of samples per bootstrap

» verbose (bool) — whether to output progress logs
Returns

Predictions of treatment effects. Output dim: [n_samples, n_treatment]. If return_ci,
returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment], UB [n_samples,
n_treatment|

Return type (numpy.ndarray)

predict (X, p=None)
Predict treatment effects.

Parameters X (np.matrix or np.array or pd.Dataframe)— a feature matrix
Returns Predictions of treatment effects.
Return type (numpy.ndarray)

class causalml.inference.meta.BaseRRegressor (learner=None, outcome_learner=None,
effect_learner=None, propen-
sity_learner=LogisticRegressionCV(Cs=array([1.00230524,
2.15608891, 4.63802765, 9.97700064]),
cv=StratifiedKFold(n_splits=4, random_state=42,
shuffle=True), 11_ratios=array([0.001, 0.33366667,
0.66633333, 0.999]), penalty='"elasticnet’,
random_state=42, solver='saga’'), ate_alpha=0.05,
control_name=0, n_fold=5, random_state=None)

Bases: causalml.inference.meta.rlearner.BaseRLearner

A parent class for R-learner regressor classes.

class causalml.inference.meta.BaseSClassifier (learner=None, ate_alpha=0.05, control_name=0)
Bases: causalml.inference.meta.slearner.BaseSLearner

A parent class for S-learner classifier classes.

predict (X, treatment=None, y=None, p=None, return_components=False, verbose=True)
Predict treatment effects. :param X: a feature matrix :type X: np.matrix or np.array or pd.Dataframe :param
treatment: a treatment vector :type treatment: np.array or pd.Series, optional :param y: an outcome vector
‘type y: np.array or pd.Series, optional :param return_components: whether to return outcome for treatment
and control seperately :type return_components: bool, optional :param verbose: whether to output progress
logs :type verbose: bool, optional

Returns Predictions of treatment effects.
Return type (numpy.ndarray)

class causalml.inference.meta.BaseSLearner (learner=None, ate_alpha=0.05, control_name=0)
Bases: causalml.inference.meta.base.BaselLearner

A parent class for S-learner classes. An S-learner estimates treatment effects with one machine learning model.
Details of S-learner are available at Kunzel et al. (2018) (https://arxiv.org/abs/1706.03461).

52 Chapter 7. causalml package

https://arxiv.org/abs/1706.03461

causalml Documentation

estimate_ate(X, treatment, y, p=None, return_ci=False, bootstrap_ci=False, n_bootstraps=1000,
bootstrap_size=10000)
Estimate the Average Treatment Effect (ATE).

Parameters
e X(np.matrix, np.array, or pd.Dataframe) - a feature matrix
e treatment (np.array or pd.Series) - atreatment vector
e y(np.array or pd.Series)— an outcome vector
e return_ci (bool, optional)— whether to return confidence intervals
¢ bootstrap_ci (bool) — whether to return confidence intervals
¢ n_bootstraps (int) — number of bootstrap iterations
* bootstrap_size (int) — number of samples per bootstrap
Returns The mean and confidence interval (LB, UB) of the ATE estimate.

fit (X, treatment, y, p=None)
Fit the inference model :param X: a feature matrix :type X: np.matrix, np.array, or pd.Dataframe :param
treatment: a treatment vector :type treatment: np.array or pd.Series :param y: an outcome vector :type y:
np.array or pd.Series

fit_predict (X, treatment, y, p=None, return_ci=False, n_bootstraps=1000, bootstrap_size=10000,
return_components=False, verbose=True)

Fit the inference model of the S learner and predict treatment effects. :param X: a feature matrix :type
X: np.matrix, np.array, or pd.Dataframe :param treatment: a treatment vector :type treatment: np.array
or pd.Series :param y: an outcome vector :type y: np.array or pd.Series :param return_ci: whether to
return confidence intervals :type return_ci: bool, optional :param n_bootstraps: number of bootstrap it-
erations :type n_bootstraps: int, optional :param bootstrap_size: number of samples per bootstrap :type
bootstrap_size: int, optional :param return_components: whether to return outcome for treatment and con-
trol seperately :type return_components: bool, optional :param verbose: whether to output progress logs
:type verbose: bool, optional

Returns

Predictions of treatment effects. Output dim: [n_samples, n_treatment]. If return_ci,
returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment], UB [n_samples,
n_treatment]

Return type (numpy.ndarray)

predict (X, treatment=None, y=None, p=None, return_components=False, verbose=True)
Predict treatment effects. :param X: a feature matrix :type X: np.matrix or np.array or pd.Dataframe :param
treatment: a treatment vector :type treatment: np.array or pd.Series, optional :param y: an outcome vector
:type y: np.array or pd.Series, optional :param return_components: whether to return outcome for treatment
and control seperately :type return_components: bool, optional :param verbose: whether to output progress
logs :type verbose: bool, optional

Returns Predictions of treatment effects.
Return type (numpy.ndarray)

class causalml.inference.meta.BaseSRegressor (learner=None, ate_alpha=0.05, control_name=0)
Bases: causalml.inference.meta.slearner.BaseSLearner

A parent class for S-learner regressor classes.

7.3. causalml.inference.meta module 53

causalml Documentation

class causalml.inference.meta.BaseTClassifier (learner=None, control_learner=None,
treatment_learner=None, ate_alpha=0.05,

control_name=0)
Bases: causalml.inference.meta.tlearner.BaseTLearner

A parent class for T-learner classifier classes.

predict (X, treatment=None, y=None, p=None, return_components=False, verbose=True)

Predict treatment effects.

Parameters

e X(np.matrix or np.array or pd.Dataframe)— a feature matrix

e treatment (np.array or pd.Series, optional) - a treatment vector

* y(np.array or pd.Series, optional) - an outcome vector

* verbose (bool, optional)— whether to output progress logs

Returns Predictions of treatment effects.

Return type (numpy.ndarray)

class causalml.inference.meta.BaseTLearner (learner=None, control_learner=None,
treatment_learner=None, ate_alpha=0.05,

control_name=0)
Bases: causalml.inference.meta.base.BaselLearner

A parent class for T-learner regressor classes.

A T-learner estimates treatment effects with two machine learning models.

Details of T-learner are available at Kunzel et al. (2018) (https://arxiv.org/abs/1706.03461).

estimate_ate(X, treatment, y, p=None, bootstrap_ci=False, n_bootstraps=1000, bootstrap_size=10000)

Estimate the Average Treatment Effect (ATE).

Parameters

e X(np.matrix or np.array or pd.Dataframe)— a feature matrix

e treatment (np.array or pd.Series)— a treatment vector

* y(np.array or pd.Series)— an outcome vector

¢ bootstrap_ci (bool) — whether to return confidence intervals

¢ n_bootstraps (int) — number of bootstrap iterations

¢ bootstrap_size (int) — number of samples per bootstrap

Returns The mean and confidence interval (LB, UB) of the ATE estimate.

fit (X, treatment, y, p=None)
Fit the inference model

Parameters

e X(np.matrix or np.array or pd.Dataframe)— a feature matrix

e treatment (np.array or pd.Series)— atreatment vector

e y(np.array or pd.Series)-— an outcome vector

fit_predict (X, treatment, y, p=None, return_ci=False, n_bootstraps=1000, bootstrap_size=10000,

return_components=False, verbose=True)
Fit the inference model of the T learner and predict treatment effects.

54

Chapter 7. causalml package

https://arxiv.org/abs/1706.03461

causalml Documentation

Parameters

X (np.matrix or np.array or pd.Dataframe) - a feature matrix
treatment (np.array or pd.Series)— atreatment vector

Yy (np.array or pd.Series)— an outcome vector

return_ci (bool) — whether to return confidence intervals
n_bootstraps (int) — number of bootstrap iterations
bootstrap_size (int) — number of samples per bootstrap

return_components (bool, optional)-— whether to return outcome for treatment and
control seperately

verbose (str) — whether to output progress logs

Returns

Predictions of treatment effects. Output dim: [n_samples, n_treatment]. If return_ci,

returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment], UB [n_samples,
n_treatment]

Return type (numpy.ndarray)

predict (X, treatment=None, y=None, p=None, return_components=False, verbose=True)
Predict treatment effects.

Parameters

X (np.matrix or np.array or pd.Dataframe) - a feature matrix
treatment (np.array or pd.Series, optional) — atreatment vector
y (np.array or pd.Series, optional) — an outcome vector

return_components (bool, optional)— whether to return outcome for treatment and
control seperately

verbose (bool, optional)— whether to output progress logs

Returns Predictions of treatment effects.

Return type (numpy.ndarray)

class causalml.inference.meta.BaseTRegressor (learner=None, control_learner=None,

treatment_learner=None, ate_alpha=0.05,
control_name=0)

Bases: causalml.inference.meta.tlearner.BaseTLearner

A parent class for T-learner regressor classes.

class causalml.inference.meta.BaseXClassifier (outcome_learner=None, effect_learner=None,

control_outcome_learner=None,
treatment_outcome_learner=None,
control_effect_learner=None,
treatment_effect_learner=None, ate_alpha=0.05,
control_name=0)

Bases: causalml.inference.meta.xlearner.BaseXLearner

A parent class for X-learner classifier classes.

fit (X, treatment, y, p=None)
Fit the inference model.

7.3. causalml.inference.meta module

55

causalml Documentation

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series) - a treatment vector
* y(np.array or pd.Series)— an outcome vector

* p (np.ndarray or pd.Series or dict, optional)— an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

predict (X, treatment=None, y=None, p=None, return_components=False, verbose=True)
Predict treatment effects.

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series, optional) — atreatment vector
e y(np.array or pd.Series, optional) - an outcome vector

* p (np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

e return_components (bool, optional)— whether to return outcome for treatment and
control seperately

e return_p_score (bool, optional)— whether to return propensity score
¢ verbose (bool, optional)— whether to output progress logs

Returns Predictions of treatment effects.

Return type (numpy.ndarray)

class causalml.inference.meta.BaseXLearner (learner=None, control_outcome_learner=None,
treatment_outcome_learner=None,
control_effect_learner=None,
treatment_effect_learner=None, ate_alpha=0.05,
control_name=0)
Bases: causalml.inference.meta.base.BaselLearner

A parent class for X-learner regressor classes.
An X-learner estimates treatment effects with four machine learning models.
Details of X-learner are available at Kunzel et al. (2018) (https://arxiv.org/abs/1706.03461).

estimate_ate (X, treatment, y, p=None, bootstrap_ci=False, n_bootstraps=1000, bootstrap_size=10000)
Estimate the Average Treatment Effect (ATE).

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series)— atreatment vector
e y(np.array or pd.Series)— an outcome vector

* p (np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to

56 Chapter 7. causalml package

https://arxiv.org/abs/1706.03461

causalml Documentation

propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

¢ bootstrap_ci (bool) — whether run bootstrap for confidence intervals
e n_bootstraps (int) — number of bootstrap iterations
* bootstrap_size (int)— number of samples per bootstrap

Returns The mean and confidence interval (LB, UB) of the ATE estimate.

fit (X, treatment, y, p=None)
Fit the inference model.

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series) - atreatment vector
* y(np.array or pd.Series)— an outcome vector

* p (np.ndarray or pd.Series or dict, optional)— an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

fit_predict (X, treatment, y, p=None, return_ci=False, n_bootstraps=1000, bootstrap_size=10000,
return_components=False, verbose=True)
Fit the treatment effect and outcome models of the R learner and predict treatment effects.

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series) - atreatment vector
* y(np.array or pd.Series)— an outcome vector

* p(np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

e return_ci (bool) — whether to return confidence intervals
e n_bootstraps (int) — number of bootstrap iterations
* bootstrap_size (int) — number of samples per bootstrap

e return_components (bool, optional)— whether to return outcome for treatment and
control seperately

» verbose (str) — whether to output progress logs
Returns

Predictions of treatment effects. Output dim: [n_samples, n_treatment] If return_ci,
returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment], UB [n_samples,
n_treatment]

Return type (numpy.ndarray)

predict (X, treatment=None, y=None, p=None, return_components=False, verbose=True)
Predict treatment effects.

Parameters

7.3.

causalml.inference.meta module 57

causalml Documentation

e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series, optional) - atreatment vector
e y(np.array or pd.Series, optional)— an outcome vector

* p(np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

¢ return_components (bool, optional) - whether to return outcome for treatment and
control seperately

¢ verbose (bool, optional)— whether to output progress logs
Returns Predictions of treatment effects.
Return type (numpy.ndarray)

class causalml.inference.meta.BaseXRegressor (learner=None, control_outcome_learner=None,
treatment_outcome_learner=None,
control_effect_learner=None,
treatment_effect_learner=None, ate_alpha=0.05,
control_name=0)
Bases: causalml.inference.meta.xlearner.BaseXLearner

A parent class for X-learner regressor classes.

class causalml.inference.meta.LRSRegressor (ate_alpha=0.05, control_name=0)
Bases: causalml.inference.meta.slearner.BaseSRegressor

estimate_ate(X, treatment, y, p=None)
Estimate the Average Treatment Effect (ATE). :param X: a feature matrix :type X: np.matrix, np.array, or
pd.Dataframe :param treatment: a treatment vector :type treatment: np.array or pd.Series :param y: an
outcome vector :type y: np.array or pd.Series

Returns The mean and confidence interval (LB, UB) of the ATE estimate.

class causalml.inference.meta.MLPTRegressor (ate_alpha=0.05, control_name=0, *args, **kwargs)
Bases: causalml.inference.meta.tlearner.BaseTRegressor

class causalml.inference.meta.TMLELearner (learner, ate_alpha=0.05, control_name=0, cv=None,
calibrate_propensity=True)
Bases: object

Targeted maximum likelihood estimation.

Ref: Gruber, S., & Van Der Laan, M. J. (2009). Targeted maximum likelihood estimation: A gentle introduction.

estimate_ate(X, treatment, y, p, segment=None, return_ci=False)
Estimate the Average Treatment Effect (ATE).

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
e treatment (np.array or pd.Series)— atreatment vector
e y(np.array or pd.Series)-— an outcome vector

* p (np.ndarray or pd.Series or dict) - an array of propensity scores of float (0,1)
in the single-treatment case; or, a dictionary of treatment groups that map to propensity
vectors of float (0,1)

58 Chapter 7. causalml package

causalml Documentation

* segment (np.array, optional)— An optional segment vector of int. If given, the ATE
and its CI will be estimated for each segment.

e return_ci (bool, optional)— Whether to return confidence intervals
Returns The ATE and its confidence interval (LB, UB) for each treatment, t and segment, s
Return type (tuple)

class causalml.inference.meta.XGBDRRegressor (ate_alpha=0.05, control_name=0, *args, **kwargs)
Bases: causalml.inference.meta.drlearner.BaseDRRegressor

class causalml.inference.meta.XGBRRegressor (early_stopping=True, test_size=0.3,
early_stopping_rounds=30,
effect_learner_objective="rank:pairwise’,
effect_learner_n_estimators=500, random_state=42,
*args, **kwargs)
Bases: causalml.inference.meta.rlearner.BaseRRegressor

fit (X, treatment, y, p=None, sample_weight=None, verbose=True)
Fit the treatment effect and outcome models of the R learner.

Parameters
e X(np.matrix or np.array or pd.Dataframe)— a feature matrix
* y(np.array or pd.Series) - an outcome vector

* p (np.ndarray or pd.Series or dict, optional) - an array of propensity scores
of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to
propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate
the propensity scores.

¢ sample_weight (np.array or pd.Series, optional)- an array of sample weights
indicating the weight of each observation for effect_learner. If None, it assumes equal
weight.

* verbose (bool, optional)— whether to output progress logs

class causalml.inference.meta.XGBTRegressor (ate_alpha=0.05, control_name=0, *args, **kwargs)
Bases: causalml.inference.meta.tlearner.BaseTRegressor

7.4 causalml.optimize module

class causalml.optimize.CounterfactualUnitSelector (learner, nevertaker_payoff, alwaystaker_payoff,

complier_payoff, defier_payoff,
organic_conversion=None)
Bases: object

A highly experimental implementation of the counterfactual unit selection model proposed by Li and Pearl
(2019).

Parameters
* learner (object) — The base learner used to estimate the segment probabilities.
» nevertaker_payoff (float) — The payoff from targeting a never-taker
* alwaystaker_payoff (float) — The payoft from targeting an always-taker

» complier_payoff (float) — The payoff from targeting a complier

7.4. causalml.optimize module 59

causalml Documentation

» defier_payoff (float) — The payoff from targeting a defier

* organic_conversion (float, optional (default=None))- The organic conversion
rate in the population without an intervention. If None, the organic conversion rate is ob-
tained from tne control group.

NB: The organic conversion in the control group is not always the same as the organic con-
version rate without treatment.

» data (DataFrame) — A pandas DataFrame containing the features, treatment assignment
indicator and the outcome of interest.

* treatment (string) — A string corresponding to the name of the treatment column. The
assumed coding in the column is 1 for treatment and O for control.

* outcome (string) — A string corresponding to the name of the outcome column. The as-
sumed coding in the column is 1 for conversion and O for no conversion.

References

Li, Ang, and Judea Pearl. 2019. “Unit Selection Based on Counterfactual Logic.” https:/ftp.cs.ucla.edu/pub/
stat_ser/r488.pdf.

fit(data, treatment, outcome)
Fits the class.

predict (data, treatment, outcome)
Predicts an individual-level payoff. If gain equality is satisfied, uses the exact function; if not, uses the
midpoint between bounds.

class causalml.optimize.CounterfactualValueEstimator (treatment, control_name, treatment_names,
y_proba, cate, value, conversion_cost,
impression_cost, *args, **kwargs)
Bases: object

Parameters

* treatment (array, shape = (num_samples,))- An array of treatment group indica-
tor values.

* control_name (string)-— The name of the control condition as a string. Must be contained
in the treatment array.

* treatment_names (list, length = cate.shape[1]) — A list of treatment group
names. NB: The order of the items in the list must correspond to the order in which the
conditional average treatment effect estimates are in cate_array.

e y_proba (array, shape = (num_samples,)) - The predicted probability of conver-
sion using the Y ~ X model across the total sample.

e cate (array, shape = (num_samples, len(set(treatment)))) — Conditional av-
erage treatment effect estimations from any model.

* value (array, shape = (num_samples,))- Value of converting each unit.

e conversion_cost (shape = (num_samples, len(set(treatment)))) - The costof
a treatment that is triggered if a unit converts after having been in the treatment, such as a
promotion code.

e impression_cost (shape = (num_samples, len(set(treatment))))— The costof
a treatment that is the same for each unit whether or not they convert, such as a cost associated
with a promotion channel.

60 Chapter 7. causalml package

https://ftp.cs.ucla.edu/pub/stat_ser/r488.pdf
https://ftp.cs.ucla.edu/pub/stat_ser/r488.pdf

causalml Documentation

Notes

Because we get the conditional average treatment effects from cate-learners relative to the control condition, we
subtract the cate for the unit in their actual treatment group from y_proba for that unit, in order to recover the
control outcome. We then add the cates to the control outcome to obtain y_proba under each condition. These
outcomes are counterfactual because just one of them is actually observed.

predict_best()
Predict the best treatment group based on the highest counterfactual value for a treatment.

predict_counterfactuals()
Predict the counterfactual values for each treatment group.

class causalml.optimize.PolicyLearner (outcome_learner=GradientBoostingRegressor(),
treatment_learner=GradientBoostingClassifier(),
policy_learner=DecisionTreeClassifier(), clip_bounds=(0.001,
0.999), n_fold=5, random_state=None, calibration=False)
Bases: object

A Learner that learns a treatment assignment policy with observational data using doubly robust estimator of
causal effect for binary treatment.

Details of the policy learner are available at Athey and Wager (2018) (https://arxiv.org/abs/1702.02896).

fit (X, treatment, y, p=None, dhat=None)
Fit the treatment assignment policy learner.

Parameters
e X (np.matrix) — a feature matrix
e treatment (np.array) — a treatment vector (1 if treated, otherwise 0)
e y (np.array) — an outcome vector
* p(optional, np.array) - user provided propensity score vector between 0 and 1
e dhat (optinal, np.array) - user provided predicted treatment effect vector
Returns returns an instance of self.
Return type self

predict(X)
Predict treatment assignment that optimizes the outcome.

Parameters X (np.matrix) — a feature matrix
Returns predictions of treatment assignment.
Return type (numpy.ndarray)

predict_proba(X)
Predict treatment assignment score that optimizes the outcome.

Parameters X (np.matrix) — a feature matrix
Returns predictions of treatment assignment score.
Return type (numpy.ndarray)

causalml.optimize.get_actual_value(treatment, observed_outcome, conversion_value, conditions,
conversion_cost, impression_cost)
Set the conversion and impression costs based on a dict of parameters.

Calculate the actual value of targeting a user with the actual treatment group using the above parameters.

7.4. causalml.optimize module 61

https://arxiv.org/abs/1702.02896

causalml Documentation

treatment [array, shape = (num_samples,)] Treatment array.

observed_outcome [array, shape = (num_samples,)] Observed outcome array, aka y.
conversion_value [array, shape = (num_samples,)] The value of converting a given user.
conditions [list, len = len(set(treatment))] List of treatment conditions.

conversion_cost [array, shape = (num_samples, num_treatment)] Array of conversion costs for each unit in each
treatment.

impression_cost [array, shape = (num_samples, num_treatment)] Array of impression costs for each unit in
each treatment.
Returns

* actual_value (array, shape = (num_samples,)) — Array of actual values of havng a user in
their actual treatment group.

* conversion_value (array, shape = (num_samples,)) — Array of payoffs from converting a
user.
causalml.optimize.get_treatment_costs (treatment, control_name, cc_dict, ic_dict)
Set the conversion and impression costs based on a dict of parameters.
Calculate the actual cost of targeting a user with the actual treatment group using the above parameters.
treatment [array, shape = (num_samples,)] Treatment array.
control_name, str Control group name as string.
cc_dict [dict] Dict containing the conversion cost for each treatment.

ic_dict Dict containing the impression cost for each treatment.

Returns

* conversion_cost (ndarray, shape = (num_samples, num_treatments)) — An array of conver-
sion costs for each treatment.

* impression_cost (ndarray, shape = (num_samples, num_treatments)) — An array of impres-
sion costs for each treatment.

* conditions (list, len = len(set(treatment))) — A list of experimental conditions.
causalml.optimize.get_uplift_best(cate, conditions)

Takes the CATE prediction from a learner, adds the control outcome array and finds the name of the argmax
conditon.

cate [array, shape = (num_samples,)] The conditional average treatment effect prediction.
conditions : list, len = len(set(treatment))
Returns uplift_recomm_name — The experimental group recommended by the learner.

Return type array, shape = (num_samples,)

62 Chapter 7. causalml package

causalml Documentation

7.5 causalml.dataset module

causalml.dataset.bar_plot_summary (synthetic_summary, k, drop_learners=[], drop_cols=[],
sort_cols=['MSE', '"Abs % Error of ATE'])
Generates a bar plot comparing learner performance.

Parameters
* synthetic_summary (pd.DataFrame)— summary generated by get_synthetic_summary()
* k (int) — number of simulations (used only for plot title text)
» drop_learners (list, optional) - list of learners (str) to omit when plotting
» drop_cols (1ist, optional) - list of metrics (str) to omit when plotting
* sort_cols (list, optional) - list of metrics (str) to sort on when plotting

causalml.dataset.bar_plot_summary_holdout (train_summary, validation_summary, k, drop_learners=[],
drop_cols=[])
Generates a bar plot comparing learner performance by training and validation

Parameters

* train_summary (pd.DataFrame) — summary for training synthetic data generated by
get_synthetic_summary_holdout()

» validation_summary (pd.DataFrame)— summary for validation synthetic data generated
by get_synthetic_summary_holdout()

* k (int) — number of simulations (used only for plot title text)
» drop_learners (1list, optional) - list of learners (str) to omit when plotting
» drop_cols (1ist, optional) - list of metrics (str) to omit when plotting

causalml.dataset.distr_plot_single_sim(synthetic_preds, kind="kde', drop_learners=[], bins=50,
histtype='step', alpha=1, linewidth=1, bw_method=1)
Plots the distribution of each learner’s predictions (for a single simulation). Kernel Density Estimation (kde) and
actual histogram plots supported.

Parameters
» synthetic_preds (dict) — dictionary of predictions generated by get_synthetic_preds()
e kind (str, optional) - ‘kde’ or ‘hist’
» drop_learners (list, optional) - list of learners (str) to omit when plotting
* bins (int, optional)— number of bins to plot if kind set to ‘hist’

* histtype (str, optional) - histogram type if kind set to ‘hist’

alpha (float, optional) — alpha (transparency) for plotting

linewidth (int, optional) - line width for plotting

bw_method (float, optional) - parameter for kde

causalml.dataset.get_synthetic_auuc(synthetic_preds, drop_learners=[], outcome_col="y’,
treatment_col="w', treatment_effect_col="tau’, plot=True)
Get auuc values for cumulative gains of model estimates in quantiles.

For details, reference get_cumgain() and plot_gain() :param synthetic_preds: dictionary of predictions gener-
ated by get_synthetic_preds() :type synthetic_preds: dict :param or get_synthetic_preds_holdout(): :param out-
come_col: the column name for the actual outcome :type outcome_col: str, optional :param treatment_col: the

7.5. causalml.dataset module 63

causalml Documentation

column name for the treatment indicator (0 or 1) :type treatment_col: str, optional :param treatment_effect_col:
the column name for the true treatment effect :type treatment_effect_col: str, optional :param plot: plot the
cumulative gain chart or not :type plot: boolean,optional

Returns auuc values by learner for cumulative gains of model estimates
Return type (pandas.DataFrame)

causalml .dataset.get_synthetic_preds (synthetic_data_func, n=1000, estimators={})
Generate predictions for synthetic data using specified function (single simulation)

Parameters

» synthetic_data_func (function) - synthetic data generation function

* n(int, optional)— number of samples

» estimators (dict of object) — dict of names and objects of treatment effect estimators
Returns dict of the actual and estimates of treatment effects
Return type (dict)

causalml .dataset.get_synthetic_preds_holdout (synthetic_data_func, n=1000, valid_size=0.2,
estimators={})
Generate predictions for synthetic data using specified function (single simulation) for train and holdout

Parameters

» synthetic_data_func (function) — synthetic data generation function

* n(int, optional)— number of samples

e valid_size (float,optional) — validaiton/hold out data size

e estimators (dict of object)— dict of names and objects of treatment effect estimators
Returns

synthetic training and validation data dictionaries:

* preds_dict_train (dict): synthetic training data dictionary

 preds_dict_valid (dict): synthetic validation data dictionary
Return type (tuple)

causalml.dataset.get_synthetic_summary (synthetic_data_func, n=1000, k=1, estimators={})
Generate a summary for predictions on synthetic data using specified function

Parameters
» synthetic_data_func (function) - synthetic data generation function
* n(int, optional)— number of samples per simulation
e k(int, optional)— number of simulations

causalml .dataset.get_synthetic_summary_holdout (synthetic_data_func, n=1000, valid_size=0.2, k=1)
Generate a summary for predictions on synthetic data for train and holdout using specified function

Parameters
» synthetic_data_func (function) — synthetic data generation function
* n(int, optional)— number of samples per simulation

e valid_size (float,optional) — validation/hold out data size

64 Chapter 7. causalml package

causalml Documentation

e k (int, optional)— number of simulations

Returns

summary evaluation metrics of predictions for train and validation:

* summary_train (pandas.DataFrame): training data evaluation summary

e summary_train (pandas.DataFrame): validation data evaluation summary

Return type (tuple)

causalml.dataset.make_uplift_classification(n_samples=1000, treatment_name=/['control’, 'treatmentl’,

‘treatment?’, 'treatment3'], y_name="conversion’,
n_classification_features=10,
n_classification_informative=5,
n_classification_redundant=0,
n_classification_repeated=0,
n_uplift_increase_dict={"treatmentl’: 2, 'treatment2’: 2,
‘treatment3': 2}, n_uplift_decrease_dict={"treatmentl’: 0,
‘treatment2’: 0, 'treatment3': 0},
delta_uplift_increase_dict={"treatmentl': 0.02,
‘treatment2’: 0.05, 'treatment3': 0.1},
delta_uplift_decrease_dict={"treatmentl': 0.0,
‘treatment2’: 0.0, 'treatment3’: 0.0},
n_uplift_increase_mix_informative_dict={"treatmentl’: I,
‘treatment2’: 1, 'treatment3': 1},
n_uplift_decrease_mix_informative_dict={"treatmentl': 0,
‘treatment2’: 0, 'treatment3': 0},
positive_class_proportion=0.5, random_seed=20190101)

Generate a synthetic dataset for classification uplift modeling problem.

Parameters

e n_samples (int, optional (default=1000)) — The number of samples to be gener-

ated for each treatment group.

¢ treatment_name

(list, optional (default = ['control’,'treatmentl’,

'treatment?2', 'treatment3'])) — The list of treatment names.

e y_name (string, optional (default = 'conversion'))— The name of the outcome
variable to be used as a column in the output dataframe.

e n_classification_features (int, optional (default = 10))— Total number of

features for base classification

e n_classification_informative (int, optional (default = 5)) - Total number
of informative features for base classification

e n_classification_redundant (int, optional (default = 0))— Total number of
redundant features for base classification

e n_classification_repeated (int, optional (default = 0)) — Total number of
repeated features for base classification

e n_uplift_increase_dict (dictionary, optional (default: {'treatmentl':

2, 'treatment2':

'treatment3': 2})) — Number of features for generating

positive treatment effects for corresponding treatment group. Dictionary of {treatment_key:
number_of_features_for_increase_uplift}.

e n_uplift_decrease_dict (dictionary, optional (default: {'treatmentl':

0, 'treatment2':

'‘treatment3’: 0})) — Number of features for generating

7.5. causalml.dataset module

65

causalml Documentation

negative treatment effects for corresponding treatment group. Dictionary of {treatment_key:
number_of_features_for_increase_uplift}.

e delta_uplift_increase_dict (dictionary, optional (default:
{'treatmentl': .02, 'treatment2': .05, 'treatment3': .1})) - Positive
treatment effect created by the positive uplift features on the base classification label.
Dictionary of {treatment_key: increase_delta}.

e delta_uplift_decrease_dict (dictionary, optional (default:
{'treatmentl': 0., 'treatment2': 0., 'treatment3': 0.})) - Negative
treatment effect created by the negative uplift features on the base classification label.
Dictionary of {treatment_key: increase_delta}.

e n_uplift_increase_mix_informative_dict (dictionary, optional (default:
{'treatmentl': 1, 'treatment2': 1, 'treatment3': 1})) — Number of positive
mix features for each treatment. The positive mix feature is defined as a linear combination
of a randomly selected informative classification feature and a randomly selected positive
uplift feature. The linear combination is made by two coeflicients sampled from a uniform
distribution between -1 and 1.

e n_uplift_decrease_mix_informative_dict (dictionary, optional (default:
{'treatmentl': 0, 'treatment2': 0, 'treatment3': 0}))— Number of negative
mix features for each treatment. The negative mix feature is defined as a linear combination
of a randomly selected informative classification feature and a randomly selected negative
uplift feature. The linear combination is made by two coefficients sampled from a uniform
distribution between -1 and 1.

* positive_class_proportion (float, optional (default = 0.5)) - The propor-
tion of positive label (1) in the control group.

e random_seed (int, optional (default = 20190101))— The random seed to be used
in the data generation process.

Returns

» df_res (DataFrame) — A data frame containing the treatment label, features, and outcome
variable.

* x_name (/ist) — The list of feature names generated.

Notes

The algorithm for generating the base classification dataset is adapted from the make_classification method in
the sklearn package, that uses the algorithm in Guyon [1] designed to generate the “Madelon” dataset.

References
causalml.dataset.scatter_plot_single_sim(synthetic_preds)
Creates a grid of scatter plots comparing each learner’s predictions with the truth (for a single simulation).

Parameters synthetic_preds (dict) - dictionary of predictions generated by
get_synthetic_preds() or get_synthetic_preds_holdout()

causalml.dataset.scatter_plot_summary (synthetic_summary, k, drop_learners=[], drop_cols=[])
Generates a scatter plot comparing learner performance. Each learner’s performance is plotted as a point in the
(Abs % Error of ATE, MSE) space.

Parameters

66 Chapter 7. causalml package

causalml Documentation

» synthetic_summary (pd.DataFrame)— summary generated by get_synthetic_summary()
* k (int) — number of simulations (used only for plot title text)

» drop_learners (list, optional) — list of learners (str) to omit when plotting

» drop_cols (list, optional) - list of metrics (str) to omit when plotting

causalml.dataset.scatter_plot_summary_holdout (train_summary, validation_summary, k, label=[Train',
'Validation'], drop_learners=[], drop_cols=[])
Generates a scatter plot comparing learner performance by training and validation.

Parameters

* train_summary (pd.DataFrame) — summary for training synthetic data generated by
get_synthetic_summary_holdout()

* validation_summary (pd.DataFrame)—summary for validation synthetic data generated
by get_synthetic_summary_holdout()

* label (string, optional) - legend label for plot

* k (int) — number of simulations (used only for plot title text)

» drop_learners (list, optional) — list of learners (str) to omit when plotting
» drop_cols (list, optional) - list of metrics (str) to omit when plotting

causalml.dataset.simulate_easy_propensity_difficult_baseline (n=1000, p=5, sigma=1.0, adj=0.0)

Synthetic data with easy propensity and a difficult baseline From Setup C in Nie X. and Wager S. (2018)
‘Quasi-Oracle Estimation of Heterogeneous Treatment Effects’
Parameters

* n(int, optional) - number of observations

e p(int optional)— number of covariates (>=3)

e sigma (float) — standard deviation of the error term

* adj (float) — no effect. added for consistency
Returns

Synthetically generated samples with the following outputs:

* y ((n,)-array): outcome variable.

* X ((n,p)-ndarray): independent variables.

* w ((n,)-array): treatment flag with value 0 or 1.

* tau ((n,)-array): individual treatment effect.

* b ((n,)-array): expected outcome.

* ¢ ((n,)-array): propensity of receiving treatment.

Return type (tuple)

causalml.dataset.simulate_hidden_confounder (n=10000, p=5, sigma=1.0, adj=0.0)

Synthetic dataset with a hidden confounder biasing treatment. From Louizos et al. (2018) “Causal Effect
Inference with Deep Latent-Variable Models”

7.5. causalml.dataset module 67

causalml Documentation

Parameters

* n(int, optional) - number of observations

e p(int optional) — number of covariates (>=3)

e sigma (float) — standard deviation of the error term

* adj (float) — no effect. added for consistency
Returns

Synthetically generated samples with the following outputs:

* y ((n,)-array): outcome variable.

* X ((n,p)-ndarray): independent variables.

* w ((n,)-array): treatment flag with value O or 1.

* tau ((n,)-array): individual treatment effect.

* b ((n,)-array): expected outcome.

* ¢ ((n,)-array): propensity of receiving treatment.

Return type (tuple)

causalml.dataset.simulate_nuisance_and_easy_treatment (n=1000, p=>5, sigma=1.0, adj=0.0)

Synthetic data with a difficult nuisance components and an easy treatment effect From Setup A in Nie X.
and Wager S. (2018) ‘Quasi-Oracle Estimation of Heterogeneous Treatment Effects’
Parameters
* n(int, optional) - number of observations
e p(int optional)— number of covariates (>=5)
e sigma (float) — standard deviation of the error term

* adj (float) — adjustment term for the distribution of propensity, e. Higher values shift the
distribution to O.

Returns
Synthetically generated samples with the following outputs:
* y ((n,)-array): outcome variable.
* X ((n,p)-ndarray): independent variables.
* w ((n,)-array): treatment flag with value O or 1.
* tau ((n,)-array): individual treatment effect.
* b ((n,)-array): expected outcome.
* ¢ ((n,)-array): propensity of receiving treatment.

Return type (tuple)

causalml .dataset.simulate_randomized_trial (n=1000, p=5, sigma=1.0, adj=0.0)

Synthetic data of a randomized trial From Setup B in Nie X. and Wager S. (2018) ‘Quasi-Oracle Estimation
of Heterogeneous Treatment Effects’

68 Chapter 7. causalml package

causalml Documentation

Parameters

* n(int, optional) - number of observations

e p(int optional) — number of covariates (>=5)

e sigma (float) — standard deviation of the error term

* adj (float) — no effect. added for consistency
Returns

Synthetically generated samples with the following outputs:

* y ((n,)-array): outcome variable.

* X ((n,p)-ndarray): independent variables.

* w ((n,)-array): treatment flag with value O or 1.

* tau ((n,)-array): individual treatment effect.

* b ((n,)-array): expected outcome.

* ¢ ((n,)-array): propensity of receiving treatment.

Return type (tuple)

causalml.dataset.simulate_unrelated_treatment_control (n=1000, p=>5, sigma=1.0, adj=0.0)

Synthetic data with unrelated treatment and control groups. From Setup D in Nie X. and Wager S. (2018)
‘Quasi-Oracle Estimation of Heterogeneous Treatment Effects’
Parameters
* n(int, optional) - number of observations
e p(int optional) — number of covariates (>=3)
e sigma (float) — standard deviation of the error term

* adj (float) — adjustment term for the distribution of propensity, e. Higher values shift the
distribution to O.

Returns
Synthetically generated samples with the following outputs:

* y ((n,)-array): outcome variable.
* X ((n,p)-ndarray): independent variables.
* w ((n,)-array): treatment flag with value O or 1.
* tau ((n,)-array): individual treatment effect.
* b ((n,)-array): expected outcome.
* ¢ ((n,)-array): propensity of receiving treatment.

Return type (tuple)

causalml.dataset.synthetic_data(mode=1, n=1000, p=5, sigma=1.0, adj=0.0)
Synthetic data in Nie X. and Wager S. (2018) ‘Quasi-Oracle Estimation of Heterogeneous Treatment Effects’

Parameters

7.5. causalml.dataset module 69

causalml Documentation

» mode (int, optional) - mode of the simulation: 1 for difficult nuisance components and
an easy treatment effect. 2 for a randomized trial. 3 for an easy propensity and a difficult
baseline. 4 for unrelated treatment and control groups. 5 for a hidden confounder biasing
treatment.

e n(int, optional) - number of observations

e p(int optional)— number of covariates (>=5)

sigma (float) — standard deviation of the error term

* adj (float) — adjustment term for the distribution of propensity, e. Higher values shift the
distribution to 0. It does not apply to mode == 2 or 3.

Returns
Synthetically generated samples with the following outputs:
* y ((n,)-array): outcome variable.
* X ((n,p)-ndarray): independent variables.
* w ((n,)-array): treatment flag with value O or 1.
* tau ((n,)-array): individual treatment effect.
* b ((n,)-array): expected outcome.
* ¢ ((n,)-array): propensity of receiving treatment.

Return type (tuple)

7.6 causalml.match module

class causalml.match.MatchOptimizer (treatment_col='"is_treatment’, ps_col='pihat’, user_col=None,

matching_covariates=['pihat'], max_smd=0.1, max_deviation=0.1,
caliper_range=(0.01, 0.5), max_pihat_range=(0.95, 0.999),
max_iter_per_param=3, min_users_per_group=1000,
smd_cols=['pihat'], dev_cols_transformations={'pihat': <function
mean=>}, dev_factor=1.0, verbose=True)

Bases: object

check_table_one (tableone, matched, score_cols, pihat_threshold, caliper)
match_and_check (score_cols, pihat_threshold, caliper)
search_best_match(df)

single_match(score_cols, pihat_threshold, caliper)

class causalml.match.NearestNeighborMatch(caliper=0.2, replace=False, ratio=1, shuffle=True,

random_state=None, n_jobs=- 1)
Bases: object

Propensity score matching based on the nearest neighbor algorithm.

caliper
threshold to be considered as a match.

Type float

replace
whether to match with replacement or not

70

Chapter 7. causalml package

causalml Documentation

Type bool

ratio
ratio of control / treatment to be matched. used only if replace=True.

Type int

shuffle
whether to shuffle the treatment group data before matching

Type bool

random_state
RandomsState or an int seed

Type numpy.random.RandomState or int

n_jobs
The number of parallel jobs to run for neighbors search. None means 1 unless in a joblib.parallel_backend
context. -1 means using all processors

Type int

match(data, treatment_col, score_cols)
Find matches from the control group by matching on specified columns (propensity preferred).

Parameters
¢ data (pandas.DataFrame) — total input data
e treatment_col (str) — the column name for the treatment

* score_cols (1ist) — list of column names for matching (propensity column should be
included)

Returns
The subset of data consisting of matched treatment and control group data.
Return type (pandas.DataFrame)

match_by_group (data, treatment_col, score_cols, groupby_col)
Find matches from the control group stratified by groupby_col, by matching on specified columns (propen-
sity preferred).

Parameters
» data (pandas.DataFrame) — total sample data
¢ treatment_col (str) — the column name for the treatment

e score_cols (1ist) — list of column names for matching (propensity column should be
included)

¢ groupby_col (str) — the column name to be used for stratification
Returns

The subset of data consisting of matched treatment and control group data.
Return type (pandas.DataFrame)

causalml .match.create_table_one(data, treatment_col, features)
Report balance in input features between the treatment and control groups.

7.6. causalml.match module 71

causalml Documentation

References
R’s tableone at CRAN: https://github.com/kaz-yos/tableone Python’s tableone at PyPi: https://github.com/
tompollard/tableone
Parameters
* data (pandas.DataFrame) — total or matched sample data
e treatment_col (str) — the column name for the treatment
e features (1ist of str)- the column names of features
Returns

A table with the means and standard deviations in the treatment and control groups, and the
SMD between two groups for the features.

Return type (pandas.DataFrame)

causalml .match.smd(feature, treatment)
Calculate the standard mean difference (SMD) of a feature between the treatment and control groups.

The definition is available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144483/#s1 1title
Parameters
» feature (pandas. Series) — a column of a feature to calculate SMD for

* treatment (pandas.Series) — a column that indicate whether a row is in the treatment
group or not

Returns The SMD of the feature
Return type (float)

7.7 causalml.propensity module

class causalml.propensity.ElasticNetPropensityModel (clip_bounds=(0.001, 0.999), **model_kwargs)
Bases: causalml.propensity.LogisticRegressionPropensityModel

class causalml.propensity.GradientBoostedPropensityModel (early_stop=False, clip_bounds=(0.001,
0.999), **model_kwargs)
Bases: causalml.propensity.PropensityModel

Gradient boosted propensity score model with optional early stopping.

Notes
Please see the xgboost documentation for more information on gradient boosting tuning parameters: https://
xgboost.readthedocs.io/en/latest/python/python_api.html

fit (X, y, early_stopping_rounds=10, stop_val_size=0.2)
Fit a propensity model.

Parameters
e X (numpy.ndarray) — a feature matrix

* y (numpy.ndarray) — a binary target vector

72 Chapter 7. causalml package

https://github.com/kaz-yos/tableone
https://github.com/tompollard/tableone
https://github.com/tompollard/tableone
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144483/#s11title
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html

causalml Documentation

predict(X)
Predict propensity scores.

Parameters X (numpy.ndarray) — a feature matrix
Returns Propensity scores between 0 and 1.
Return type (numpy.ndarray)

class causalml.propensity.LogisticRegressionPropensityModel (clip_bounds=(0.001, 0.999),

**model_kwargs)
Bases: causalml.propensity.PropensityModel

Propensity regression model based on the LogisticRegression algorithm.

class causalml.propensity.PropensityModel (clip_bounds=(0.001, 0.999), **model_kwargs)
Bases: object

fit(X, y)
Fit a propensity model.

Parameters

e X (numpy .ndarray) — a feature matrix

* y (numpy.ndarray) — a binary target vector

fit_predict(X,y)
Fit a propensity model and predict propensity scores.

Parameters

e X (numpy.ndarray) — a feature matrix

* y (numpy.ndarray) — a binary target vector
Returns Propensity scores between 0 and 1.
Return type (numpy.ndarray)

predict(X)
Predict propensity scores.

Parameters X (numpy.ndarray) — a feature matrix
Returns Propensity scores between 0 and 1.
Return type (numpy.ndarray)

causalml.propensity.calibrate(ps, treatment)
Calibrate propensity scores with logistic GAM.

Ref: https://pygam.readthedocs.io/en/latest/api/logisticgam.html
Parameters
* ps (numpy.array) — a propensity score vector
* treatment (numpy.array) — a binary treatment vector (0: control, 1: treated)
Returns a calibrated propensity score vector

Return type (numpy.array)

causalml . propensity.compute_propensity_score (X, treatment, p_model=None, X_pred=None,

treatment_pred=None, calibrate_p=True)
Generate propensity score if user didn’t provide

7.7. causalml.propensity module 73

https://pygam.readthedocs.io/en/latest/api/logisticgam.html

causalml Documentation

Parameters
* X (np.matrix) — features for training
* treatment (np.array or pd.Series)— a treatment vector for training

» p_model (propensity model object, optional) — ElasticNetPropensityModel (de-
fault) / GradientBoostedPropensityModel

* X pred (np.matrix, optional) - features for prediction

e treatment_pred (np.array or pd.Series, optional) — a treatment vector for
prediciton

» calibrate_p (bool, optional) - whether calibrate the propensity score
Returns
(tuple)
* p (numpy.ndarray): propensity score

* p_model (PropensityModel): a trained PropensityModel object

7.8 causalml.metrics module

class causalml.metrics.Sensitivity(df, inference_features, p_col, treatment_col, outcome_col, learner,
*args, **kwargs)
Bases: object

A Sensitivity Check class to support Placebo Treatment, Irrelevant Additional Confounder and Subset validation
refutation methods to verify causal inference.

Reference: https://github.com/microsoft/dowhy/blob/master/dowhy/causal_refuters/

get_ate_ci(X, p, treatment, y)
Return the confidence intervals for treatment effects prediction.

Parameters
e X (np.matrix) — a feature matrix
* p (np.array) — a propensity score vector between 0 and 1
e treatment (np.array) — a treatment vector (1 if treated, otherwise 0)
e y (np.array) — an outcome vector
Returns Mean and confidence interval (LB, UB) of the ATE estimate.
Return type (numpy.ndarray)

static get_class_object (method_name, *args, **kwargs)
Return class object based on input method :param method_name: a list of sensitivity analysis method :type
method_name: list of str

Returns Sensitivy Class
Return type (class)

get_prediction(X, p, treatment, y)
Return the treatment effects prediction.

Parameters

74 Chapter 7. causalml package

https://github.com/microsoft/dowhy/blob/master/dowhy/causal_refuters/

causalml Documentation

e X (np.matrix) — a feature matrix
* p (np.array) — a propensity score vector between 0 and 1
e treatment (np.array) — a treatment vector (1 if treated, otherwise 0)
e y (np.array) — an outcome vector
Returns Predictions of treatment effects
Return type (numpy.ndarray)

sensitivity_analysis (methods, sample_size=None, confound='one_sided', alpha_range=None)
Return the sensitivity data by different method

Parameters
e method (1ist of str)— alist of sensitivity analysis method
» sample_size (float, optional) - ratio for subset the original data
» confound (string, optional) - the name of confouding function
¢ alpha_range (np.array, optional) - a parameter to pass the confounding function

Returns a feature matrix p (np.array): a propensity score vector between 0 and 1 treatment
(np.array): a treatment vector (1 if treated, otherwise 0) y (np.array): an outcome vector

Return type X (np.matrix)
sensitivity_estimate()

summary (method)
Summary report :param method_name: sensitivity analysis method :type method_name: str

Returns a summary dataframe
Return type (pd.DataFrame)

class causalml.metrics.SensitivityPlaceboTreatment (*args, **kwargs)
Bases: causalml.metrics.sensitivity.Sensitivity

Replaces the treatment variable with a new variable randomly generated.

sensitivity_estimate()
Summary report :param return_ci: sensitivity analysis method :type return_ci: str

Returns a summary dataframe
Return type (pd.DataFrame)

class causalml.metrics.SensitivityRandomCause (*args, **kwargs)
Bases: causalml.metrics.sensitivity.Sensitivity

Adds an irrelevant random covariate to the dataframe.
sensitivity_estimate()

class causalml.metrics.SensitivityRandomReplace (*args, **kwargs)
Bases: causalml.metrics.sensitivity.Sensitivity

Replaces a random covariate with an irrelevant variable.

sensitivity_estimate()
Replaces a random covariate with an irrelevant variable.

7.8. causalml.metrics module

75

causalml Documentation

class causalml.metrics.SensitivitySelectionBias(*args, confound='one_sided', alpha_range=None,

sensitivity_features=None, **kwargs)
Bases: causalml.metrics.sensitivity.Sensitivity

Reference:

[1] Blackwell, Matthew. “A selection bias approach to sensitivity analysis for causal effects.” Political Analysis
22.2 (2014): 169-182. https://www.mattblackwell.org/files/papers/causalsens.pdf

[2] Confouding parameter alpha_range using the same range as in: https://github.com/mattblackwell/causalsens/
blob/master/R/causalsens.R

causalsens()

static partial_rsqs_confounding (sens_df, feature_name, partial_rsqs_value, range=0.01)
Check partial rsqs values of feature corresponding confounding amonunt of ATE :param sens_df: a
data frame output from causalsens :type sens_df: pandas.DataFrame :param feature_name: feature name
to check :type feature_name: str :param partial_rsqs_value: partial rsquare value of feature :type par-
tial_rsqs_value: float :param range: range to search from sens_df :type range: float

Return: min and max value of confounding amount

static plot(sens_df, partial_rsqs_df=None, type="raw', ci=False, partial_rsqs=False)
Plot the results of a sensitivity analysis against unmeasured :param sens_df: a data frame output from
causalsens :type sens_df: pandas.DataFrame :param partial_rsqs_d: a data frame output from causalsens
including partial rsqure :type partial_rsqs_d: pandas.DataFrame :param type: the type of plot to draw, ‘raw’
or ‘r.squared’ are supported :type type: str, optional :param ci: whether plot confidence intervals :type ci:
bool, optional :param partial_rsqs: whether plot partial rsquare results :type partial_rsqs: bool, optional

summary (method='Selection Bias")
Summary report for Selection Bias Method :param method_name: sensitivity analysis method :type
method_name: str

Returns a summary dataframe

Return type (pd.DataFrame)

class causalml.metrics.SensitivitySubsetData(*args, **kwargs)

Bases: causalml.metrics.sensitivity.Sensitivity

Takes a random subset of size sample_size of the data.

sensitivity_estimate()

causalml .metrics.ape(y, p)

Absolute Percentage Error (APE). :param y: target :type y: float :param p: prediction :type p: float
Returns APE

Return type e (float)

causalml .metrics.auuc_score(df, outcome_col='y', treatment_col="w', treatment_effect_col="tau’,

normalize=True, tmle=False, *args, **kwarg)

Calculate the AUUC (Area Under the Uplift Curve) score.

Args: df (pandas.DataFrame): a data frame with model estimates and actual data as columns out-
come_col (str, optional): the column name for the actual outcome treatment_col (str, optional):
the column name for the treatment indicator (0 or 1) treatment_effect_col (str, optional): the
column name for the true treatment effect normalize (bool, optional): whether to normalize the
y-axis to 1 or not

Returns the AUUC score

76

Chapter 7. causalml package

https://www.mattblackwell.org/files/papers/causalsens.pdf
https://github.com/mattblackwell/causalsens/blob/master/R/causalsens.R
https://github.com/mattblackwell/causalsens/blob/master/R/causalsens.R

causalml Documentation

Return type (float)

causalml .metrics.classification_metrics(y, p, w=None, metrics={'AUC': <function roc_auc_score>, 'Log
Loss': <function logloss>})
Log metrics for classifiers.

Parameters
* y (numpy.array) — target
* p (numpy.array) — prediction

e W (numpy.array, optional) — a treatment vector (1 or True: treatment, O or False: con-
trol). If given, log metrics for the treatment and control group separately

* metrics (dict, optional)— a dictionary of the metric names and functions

causalml .metrics.get_cumgain(df, outcome_col="y’, treatment_col="w', treatment_effect_col="tau’,
normalize=False, random_seed=42)
Get cumulative gains of model estimates in population.

If the true treatment effect is provided (e.g. in synthetic data), it’s calculated as the cumulative gain of the true
treatment effect in each population. Otherwise, it’s calculated as the cumulative difference between the mean
outcomes of the treatment and control groups in each population.

For details, see Section 4.1 of Gutierrez and G{ ‘e }rardy (2016), Causal Inference and Uplift Modeling: A review
of the literature.

For the former, treatment _effect_col should be provided. For the latter, both outcome_col and treatment_col
should be provided.

Parameters
» df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
e outcome_col (str, optional) - the column name for the actual outcome
e treatment_col (str, optional) - the column name for the treatment indicator (O or 1)

e treatment_effect_col (str, optional) - the column name for the true treatment ef-
fect

* normalize (bool, optional) - whether to normalize the y-axis to 1 or not
» random_seed (int, optional)—random seed for numpy.random.rand()
Returns cumulative gains of model estimates in population
Return type (pandas.DataFrame)

causalml .metrics.get_cumlift (df, outcome_col="y', treatment_col='w', treatment_effect_col='"tau’,
random_seed=42)
Get average uplifts of model estimates in cumulative population.

If the true treatment effect is provided (e.g. in synthetic data), it’s calculated as the mean of the true treatment
effect in each of cumulative population. Otherwise, it’s calculated as the difference between the mean outcomes
of the treatment and control groups in each of cumulative population.

For details, see Section 4.1 of Gutierrez and G{ ‘e }rardy (2016), Causal Inference and Uplift Modeling: A review
of the literature.

For the former, treatment_effect_col should be provided. For the latter, both outcome_col and treatment_col
should be provided.

Parameters

7.8. causalml.metrics module 77

causalml Documentation

df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
outcome_col (str, optional) — the column name for the actual outcome
treatment_col (str, optional) - the column name for the treatment indicator (0 or 1)

treatment_effect_col (str, optional) — the column name for the true treatment ef-
fect

random_seed (int, optional) - random seed for numpy.random.rand()

Returns average uplifts of model estimates in cumulative population

Return type (pandas.DataFrame)

causalml .metrics.get_qini (df, outcome_col="y', treatment_col='w’', treatment_effect_col="tau’,

normalize=False, random_seed=42)

Get Qini of model estimates in population.

If the true treatment effect is provided (e.g. in synthetic data), it’s calculated as the cumulative gain of the true
treatment effect in each population. Otherwise, it’s calculated as the cumulative difference between the mean
outcomes of the treatment and control groups in each population.

For details, see Radcliffe (2007), Using Control Group to Target on Predicted Lift: Building and Assessing Uplift

Models

For the former, treatment_effect_col should be provided. For the latter, both outcome_col and treatment_col
should be provided.

Parameters

df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
outcome_col (str, optional) - the column name for the actual outcome
treatment_col (str, optional) — the column name for the treatment indicator (0 or 1)

treatment_effect_col (str, optional) — the column name for the true treatment ef-
fect

normalize (bool, optional)— whether to normalize the y-axis to 1 or not

random_seed (int, optional)—random seed for numpy.random.rand()

Returns cumulative gains of model estimates in population

Return type (pandas.DataFrame)

causalml .metrics.get_tmlegain(df, inference_col, learner=LGBMRegressor(learning_rate=0.05,

n_estimators=300, num_leaves=64), outcome_col="y', treatment_col="w’,
p_col="p', n_segment=5, cv=None, calibrate_propensity=True, ci=False)

Get TMLE based average uplifts of model estimates of segments.

Parameters

df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
inferenece_col (1ist of str)—alist of columns that used in learner for inference
learner (optional) — a model used by TMLE to estimate the outcome

outcome_col (str, optional) - the column name for the actual outcome
treatment_col (str, optional) — the column name for the treatment indicator (0 or 1)
p_col (str, optional) - the column name for propensity score

n_segment (int, optional)— number of segment that TMLE will estimated for each

78

Chapter 7. causalml package

causalml Documentation

* cv (sklearn.model_selection._BaseKFold, optional) - sklearn CV object
* calibrate_propensity (bool, optional)— whether calibrate propensity score or not
e ci(bool, optional)— whether return confidence intervals for ATE or not

Returns cumulative gains of model estimates based of TMLE

Return type (pandas.DataFrame)

causalml .metrics.get_tmleqini (df, inference_col, learner=LGBMRegressor(learning_rate=0.05,
n_estimators=300, num_leaves=64), outcome_col="y', treatment_col="'w’,
p_col='p', n_segment=5, cv=None, calibrate_propensity=True, ci=False,
normalize=False)
Get TMLE based Qini of model estimates by segments.

Parameters
» df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
e inferenece_col (1ist of str)— alist of columns that used in learner for inference
* learner (optional) —a model used by TMLE to estimate the outcome
e outcome_col (str, optional) - the column name for the actual outcome
e treatment_col (str, optional) - the column name for the treatment indicator (O or 1)
e p_col (str, optional) - the column name for propensity score
* n_segment (int, optional)— number of segment that TMLE will estimated for each
* cv (sklearn.model_selection._BaseKFold, optional)—sklearn CV object
» calibrate_propensity (bool, optional) - whether calibrate propensity score or not
e ci(bool, optional)— whether return confidence intervals for ATE or not
Returns cumulative gains of model estimates based of TMLE
Return type (pandas.DataFrame)

causalml .metrics.gini(y, p)
Normalized Gini Coeflicient.

Parameters

* y (numpy.array) — target

* p (numpy.array) — prediction
Returns normalized Gini coefficient
Return type e (numpy.float64)

causalml .metrics.logloss(y, p)
Bounded log loss error. :param y: target :type y: numpy.array :param p: prediction :type p: numpy.array

Returns bounded log loss error

causalml .metrics.mae(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average")
Mean absolute error regression loss.

Read more in the User Guide.
Parameters

e y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) -
Ground truth (correct) target values.

7.8. causalml.metrics module 79

causalml Documentation

e y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) -
Estimated target values.

* sample_weight (array-like of shape (n_samples,), default=None) — Sample
weights.

e multioutput ({'raw_values', 'uniform_average'} or array-like of shape
(n_outputs,), default='uniform_average') —Defines aggregating of multiple output
values. Array-like value defines weights used to average errors.

’raw_values’ : Returns a full set of errors in case of multioutput input.
uniform_average’ : Errors of all outputs are averaged with uniform weight.
Returns

loss — If multioutput is ‘raw_values’, then mean absolute error is returned for each output sepa-
rately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted average
of all output errors is returned.

MAE output is non-negative floating point. The best value is 0.0.

Return type float or ndarray of floats

Examples

>>> from sklearn.metrics import mean_absolute_error

>>> y_true = [3, -0.5, 2, 7]

>>> y_pred = [2.5, 0.0, 2, 8]

>>> mean_absolute_error(y_true, y_pred)

0.5

>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]

>>> y_pred = [[0, 2], [-1, 2], [8, -5]]

>>> mean_absolute_error(y_true, y_pred)

0.75

>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. 1)

>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

causalml .metrics.mape(y, p)
Mean Absolute Percentage Error (MAPE). :param y: target :type y: numpy.array :param p: prediction :type p:
numpy.array

Returns MAPE
Return type e (numpy.float64)

causalml .metrics.plot(df, kind='gain’, tmle=False, n=100, figsize=(8, 8), *args, **kwarg)
Plot one of the lift/gain/Qini charts of model estimates.

A factory method for plot_lift(), plot_gain(), plot_qini(), plot_tmlegain() and plot_tmleqini(). For details, pleas
see docstrings of each function.

Parameters
e df (pandas.DataFrame) — a data frame with model estimates and actual data as columns.
* kind (str, optional) - the kind of plot to draw. ‘lift’, ‘gain’, and ‘qini’ are supported.

* n(int, optional) - the number of samples to be used for plotting.

80 Chapter 7. causalml package

causalml Documentation

causalml .metrics.plot_gain(df, outcome_col="y', treatment_col="w', treatment_effect_col="tau’,

normalize=False, random_seed=42, n=100, figsize=(8, 8))
Plot the cumulative gain chart (or uplift curve) of model estimates.

If the true treatment effect is provided (e.g. in synthetic data), it’s calculated as the cumulative gain of the true
treatment effect in each population. Otherwise, it’s calculated as the cumulative difference between the mean
outcomes of the treatment and control groups in each population.

For details, see Section 4.1 of Gutierrez and G{ ‘e }rardy (2016), Causal Inference and Uplift Modeling: A review
of the literature.

For the former, treatment_effect_col should be provided. For the latter, both outcome_col and treatment_col
should be provided.

Parameters
» df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
e outcome_col (str, optional) - the column name for the actual outcome
e treatment_col (str, optional)— the column name for the treatment indicator (0 or 1)

e treatment_effect_col (str, optional) - the column name for the true treatment ef-
fect

* normalize (bool, optional)— whether to normalize the y-axis to 1 or not
e random_seed (int, optional)—random seed for numpy.random.rand()

* n(int, optional) - the number of samples to be used for plotting

causalml .metrics.plot_lift(df, outcome_col="y', treatment_col="w', treatment_effect_col="tau’,

random_seed=42, n=100, figsize=(8, 8))
Plot the lift chart of model estimates in cumulative population.

If the true treatment effect is provided (e.g. in synthetic data), it’s calculated as the mean of the true treatment
effect in each of cumulative population. Otherwise, it’s calculated as the difference between the mean outcomes
of the treatment and control groups in each of cumulative population.

For details, see Section 4.1 of Gutierrez and G{ ‘e }rardy (2016), Causal Inference and Uplift Modeling: A review
of the literature.

For the former, treatment _effect_col should be provided. For the latter, both outcome_col and treatment_col
should be provided.

Parameters
e df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
e outcome_col (str, optional) - the column name for the actual outcome
e treatment_col (str, optional) - the column name for the treatment indicator (O or 1)

e treatment_effect_col (str, optional) - the column name for the true treatment ef-
fect

» random_seed (int, optional)—random seed for numpy.random.rand()

* n(int, optional)—the number of samples to be used for plotting

causalml .metrics.plot_qini (df, outcome_col="y', treatment_col="w', treatment_effect_col="tau’,

normalize=False, random_seed=42, n=100, figsize=(8, 8))
Plot the Qini chart (or uplift curve) of model estimates.

7.8. causalml.metrics module 81

causalml Documentation

If the true treatment effect is provided (e.g. in synthetic data), it’s calculated as the cumulative gain of the true
treatment effect in each population. Otherwise, it’s calculated as the cumulative difference between the mean
outcomes of the treatment and control groups in each population.

For details, see Radcliffe (2007), Using Control Group to Target on Predicted Lift: Building and Assessing Uplift

Models

For the former, treatment_effect_col should be provided. For the latter, both outcome_col and treatment_col
should be provided.

Parameters

df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
outcome_col (str, optional) - the column name for the actual outcome
treatment_col (str, optional) — the column name for the treatment indicator (0 or 1)

treatment_effect_col (str, optional) — the column name for the true treatment ef-
fect

normalize (bool, optional)— whether to normalize the y-axis to 1 or not
random_seed (int, optional) - random seed for numpy.random.rand()
n (int, optional) - the number of samples to be used for plotting

ci (bool, optional)— whether return confidence intervals for ATE or not

causalml .metrics.plot_tmlegain(dyf, inference_col, learner=LGBMRegressor(learning_rate=0.05,

n_estimators=300, num_leaves=64), outcome_col="y', treatment_col='w’',
p_col="tau’, n_segment=35, cv=None, calibrate_propensity=True, ci=False,

figsize=(8, 8))

Plot the lift chart based of TMLE estimation

Parameters

df (pandas.DataFrame) — a data frame with model estimates and actual data as columns
inferenece_col (1ist of str) - alist of columns that used in learner for inference
learner (optional) — a model used by TMLE to estimate the outcome

outcome_col (str, optional) — the column name for the actual outcome
treatment_col (str, optional) - the column name for the treatment indicator (0 or 1)
p_col (str, optional) - the column name for propensity score

n_segment (int, optional)— number of segment that TMLE will estimated for each
cv (sklearn.model_selection._BaseKFold, optional) - sklearn CV object
calibrate_propensity (bool, optional)— whether calibrate propensity score or not

ci (bool, optional)— whether return confidence intervals for ATE or not

causalml .metrics.plot_tmleqini (df, inference_col, learner=LGBMRegressor(learning_rate=0.05,

n_estimators=300, num_leaves=64), outcome_col="y’, treatment_col="w’,
p_col="tau’, n_segment=5, cv=None, calibrate_propensity=True, ci=False,
figsize=(8, 8))

Plot the qini chart based of TMLE estimation

Parameters

df (pandas.DataFrame) — a data frame with model estimates and actual data as columns

82

Chapter 7. causalml package

causalml Documentation

e inferenece_col (1ist of str)— alist of columns that used in learner for inference

* learner (optional) —a model used by TMLE to estimate the outcome

e outcome_col (str, optional) - the column name for the actual outcome

e treatment_col (str, optional) - the column name for the treatment indicator (O or 1)
e p_col (str, optional) - the column name for propensity score

* n_segment (int, optional)— number of segment that TMLE will estimated for each

* cv(sklearn.model_selection._BaseKFold, optional) - sklearn CV object

» calibrate_propensity (bool, optional) - whether calibrate propensity score or not
e ci(bool, optional)— whether return confidence intervals for ATE or not

causalml .metrics.qini_score(df, outcome_col="y', treatment_col="w', treatment_effect_col="tau’,
normalize=True, tmle=False, *args, **kwarg)
Calculate the Qini score: the area between the Qini curves of a model and random.

For details, see Radcliffe (2007), Using Control Group to Target on Predicted Lift: Building and Assessing Uplift
Models

Args: df (pandas.DataFrame): a data frame with model estimates and actual data as columns out-
come_col (str, optional): the column name for the actual outcome treatment_col (str, optional):
the column name for the treatment indicator (0 or 1) treatment_effect_col (str, optional): the
column name for the true treatment effect normalize (bool, optional): whether to normalize the
y-axis to 1 or not

Returns the Qini score

Return type (float)

causalml .metrics.r2_score(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average")

R? (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model
that always predicts the expected value of y, disregarding the input features, would get a R? score of 0.0.

Read more in the User Guide.
Parameters

e y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) -
Ground truth (correct) target values.

e y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) -
Estimated target values.

» sample_weight (array-like of shape (n_samples,), default=None) — Sample
weights.

e multioutput ({'raw_values', 'uniform_average', 'variance_weighted'},
array-like of shape (n_outputs,) or None, default='uniform_average')
Defines aggregating of multiple output scores. Array-like value defines weights used to
average scores. Default is “uniform_average”.

’raw_values’ : Returns a full set of scores in case of multioutput input.
uniform_average’ : Scores of all outputs are averaged with uniform weight.

’variance_weighted’ : Scores of all outputs are averaged, weighted by the variances of each
individual output.

7.8. causalml.metrics module 83

causalml Documentation

Changed in version 0.19: Default value of multioutput is ‘uniform_average’.
Returns z — The R? score or ndarray of scores if ‘multioutput’ is ‘raw_values’.
Return type float or ndarray of floats

Notes

This is not a symmetric function.
Unlike most other scores, R? score may be negative (it need not actually be the square of a quantity R).
This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two.

References

Examples

>>> from sklearn.metrics import r2_score

>>> y_true = [3, -0.5, 2, 7]

>>> y_pred = [2.5, 0.0, 2, 8]

>>> r2_score(y_true, y_pred)

0.948...

>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]

>>> y_pred [[e, 21, [-1, 21, [8, -511

>>> r2_score(y_true, y_pred,
multioutput="variance_weighted"')

0.938...

>>> y_true = [1, 2, 3]

>>> y_pred = [1, 2, 3]

>>> r2_score(y_true, y_pred)
1.0

>>> y_true = [1, 2, 3]

>>> y_pred = [2, 2, 2]

>>> r2_score(y_true, y_pred)
0.0

>>> y_true = [1, 2, 3]

>>> y_pred = [3, 2, 1]

>>> r2_score(y_true, y_pred)
-3.0

causalml.metrics.regression_metrics(y, p, w=None, metrics={'Gini': <function gini>, 'RMSE': <function

rmse>, 'sMAPE': <function smape>})
Log metrics for regressors.

Parameters
* y (numpy.array) — target
* p (numpy.array) — prediction

e W (numpy.array, optional) — a treatment vector (1 or True: treatment, O or False: con-
trol). If given, log metrics for the treatment and control group separately

* metrics (dict, optional)— a dictionary of the metric names and functions

84

Chapter 7. causalml package

causalml Documentation

causalml .metrics.rmse(y, p)
Root Mean Squared Error (RMSE). :param y: target :type y: numpy.array :param p: prediction :type p:

numpy.array

Returns RMSE

Return type e (numpy.float64)

causalml .metrics.roc_auc_score(y_true, y_score, *, average="macro', sample_weight=None, max_fpr=None,

multi_class="raise’, labels=None)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions
apply (see Parameters).

Read more in the User Guide.

Parameters

e y_true (array-like of shape (n_samples,) or (n_samples, n_classes)) -

True labels or binary label indicators. The binary and multiclass cases expect labels with
shape (n_samples,) while the multilabel case expects binary label indicators with shape
(n_samples, n_classes).

y_score (array-like of shape (n_samples,) or (n_samples, n_classes)) —
Target scores.

— In the binary case, it corresponds to an array of shape (n_samples,). Both probability esti-

mates and non-thresholded decision values can be provided. The probability estimates cor-
respond to the probability of the class with the greater label, i.e. estimator.classes_[1]
and thus estimator.predict_proba(X, y)[:, 1]. The decision values corresponds to the out-
put of estimator.decision_function(X, y). See more information in the User guide;

— In the multiclass case, it corresponds to an array of shape (n_samples, n_classes) of prob-

ability estimates provided by the predict_proba method. The probability estimates must
sum to 1 across the possible classes. In addition, the order of the class scores must cor-
respond to the order of labels, if provided, or else to the numerical or lexicographical
order of the labels in y_true. See more information in the User guide;

— In the multilabel case, it corresponds to an array of shape (n_samples, n_classes). Prob-

ability estimates are provided by the predict_proba method and the non-thresholded de-
cision values by the decision_function method. The probability estimates correspond to
the probability of the class with the greater label for each output of the classifier. See
more information in the User guide.

average ({micro', macro', 'samples', 'weighted'} or None, default=macro')
— If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data: Note: multiclass ROC AUC currently only handles the
‘macro’ and ‘weighted’ averages.

'micro': Calculate metrics globally by considering each element of the label indicator ma-

trix as a label.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not

take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by support

(the number of true instances for each label).

'samples': Calculate metrics for each instance, and find their average.

Will be ignored when y_true is binary.

7.8. causalml.metrics module

85

causalml Documentation

» sample_weight (array-like of shape (n_samples,), default=None) — Sample
weights.

» max_fpr (float > 0 and <= 1, default=None)-If not None, the standardized partial
AUC? over the range [0, max_fpr] is returned. For the multiclass case, max_£fpr, should be
either equal to None or 1.0 as AUC ROC partial computation currently is not supported for
multiclass.

e multi_class ({'raise’, 'ovr', 'ovo'}, default='raise') — Only used for multiclass
targets. Determines the type of configuration to use. The default value raises an error, so
either 'ovr' or 'ovo' must be passed explicitly.

"ovr': Stands for One-vs-rest. Computes the AUC of each class against the rest’*. This

treats the multiclass case in the same way as the multilabel case. Sensitive to class imbal-
ance even when average == 'macro’, because class imbalance affects the composition
of each of the ‘rest’ groupings.

ovo': Stands for One-vs-one. Computes the average AUC of all possible pairwise combi-
nations of classes’. Insensitive to class imbalance when average == 'macro'.

* labels(array-like of shape (n_classes,), default=None)-Only used for mul-
ticlass targets. List of labels that index the classes in y_score. If None, the numerical or
lexicographical order of the labels in y_true is used.

Returns auc

Return type float

References
See also:

average_precision_score Area under the precision-recall curve.
roc_curve Compute Receiver operating characteristic (ROC) curve.

RocCurveDisplay.from_estimator Plot Receiver Operating Characteristic (ROC) curve given an estimator
and some data.

RocCurveDisplay. from_predictions Plot Receiver Operating Characteristic (ROC) curve given the true
and predicted values.

Examples

Binary case:

>>> from sklearn.datasets import load_breast_cancer

>>> from sklearn.linear_model import LogisticRegression

>>> from sklearn.metrics import roc_auc_score

>>> X, y = load_breast_cancer(return_X_y=True)

>>> clf = LogisticRegression(solver="1iblinear", random_state=0).fit(X, y)

(continues on next page)

2 Analyzing a portion of the ROC curve. McClish, 1989

3 Provost, F., Domingos, P. (2000). Well-trained PETs: Improving probability estimation trees (Section 6.2), CeDER Working Paper #IS-00-04,
Stern School of Business, New York University.

4 Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874.

5 Hand, D.J., Till, R.J. (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine
Learning, 45(2), 171-186.

86 Chapter 7. causalml package

https://www.ncbi.nlm.nih.gov/pubmed/2668680
https://www.sciencedirect.com/science/article/pii/S016786550500303X
http://link.springer.com/article/10.1023/A:1010920819831
http://link.springer.com/article/10.1023/A:1010920819831

causalml Documentation

(continued from previous page)

>>> roc_auc_score(y, clf.predict_proba(X)[:, 1])
0.99...

>>> roc_auc_score(y, clf.decision_function(X))
0.99...

Multiclass case:

>>> from sklearn.datasets import load_iris

>>> X, y = load_iris(return_X_y=True)

>>> clf = LogisticRegression(solver="1iblinear").fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X), multi_class="ovr')
0.99...

Multilabel case:

>>> import numpy as np

>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier

>>> X, y = make_multilabel_classification(random_state=0)

>>> clf = MultiOutputClassifier(clf).fit(X, y)

>>> # get a list of n_output containing probability arrays of shape
>>> # (n_samples, n_classes)

>>> y_pred = clf.predict_proba(X)

>>> # extract the positive columns for each output

>>> y_pred = np.transpose([pred[:, 1] for pred in y_pred])

>>> roc_auc_score(y, y_pred, average=None)

array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])

>>> from sklearn.linear_model import RidgeClassifierCV

>>> clf = RidgeClassifierCV(Q).fit(X, y)

>>> roc_auc_score(y, clf.decision_function(X), average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])

causalml .metrics.smape(y, p)
Symmetric Mean Absolute Percentage Error (SMAPE). :param y: target :type y: numpy.array :param p: predic-
tion :type p: numpy.array

Returns sMAPE
Return type e (numpy.float64)

7.9 Module contents

7.9. Module contents 87

causalml Documentation

88 Chapter 7. causalml package

CHAPTER
EIGHT

REFERENCES

8.1 Open Source Software Projects

8.1.1 Python Packages

* DoWhy: a package for causal inference based on causal graphs.
e CausalLift: a package for uplift modeling based on T-learner [15].
» PyLift: a package for uplift modeling based on the transformed outcome method in [4].

e EconML: a package for treatment effect estimation with orthogonal random forest [19], DeepIV [11] and other
ML methods.

8.1.2 R Packages

* uplift: a package for treatment effect estimation with ML.

» grf: a package for forest-based honest estimation from [5].

8.2 Papers

89

https://github.com/Microsoft/dowhy
https://github.com/Minyus/causallift/
https://github.com/wayfair/pylift
https://github.com/Microsoft/EconML
https://cran.r-project.org/web/packages/uplift/index.html
https://github.com/grf-labs/grf

causalml Documentation

90 Chapter 8. References

CHAPTER
NINE

CHANGELOG

9.1 0.11.0 (2021-07-28)

* CausalML surpassed 2K stars!

* We have 3 new community contributors, Jannik (@jroessler), Mohamed (@ibraaaa), and Leo (@lleiou). Thanks
for the contribution!

9.1.1 Major Updates

* Make tensorflow dependency optional and add python 3.9 support by @jeongyoonlee (#343)
* Add delta-delta-p (ddp) tree inference approach by @jroessler (#327)
* Add conda env files for Python 3.6, 3.7, and 3.8 by @jeongyoonlee (#324)

9.1.2 Minor Updates

* Fix inconsistent feature importance calculation in uplift tree by @paullo0106 (#372)

* Fix filter method failure with NaNs in the data issue by @manojbalajil (#367)

* Add automatic package publish by @jeongyoonlee (#354)

* Fix typo in unit_selection optimization by @jeongyoonlee (#347)

* Fix docs build failure by @jeongyoonlee (#335)

* Convert pandas inputs to numpy in S/T/R Learners by @jeongyoonlee (#333)

* Require scikit-learn as a dependency of setup.py by @ibraaaa (#325)

* Fix AttributeError when passing in Outcome and Effect learner to R-Learner by @paullo0106 (#320)
* Fix error when there is no positive class for KL Divergence filter by @lleiou (#311)

* Add versions to cython and numpy in setup.py for requirements.txt accordingly by @maccam912 (#306)

91

https://github.com/uber/causalml/stargazers
https://github.com/jroessler
https://github.com/ibraaaa
https://github.com/lleiou
https://github.com/uber/causalml/pull/343
https://github.com/uber/causalml/pull/327
https://github.com/uber/causalml/pull/324
https://github.com/uber/causalml/pull/372
https://github.com/uber/causalml/pull/367
https://github.com/uber/causalml/pull/354
https://github.com/uber/causalml/pull/347
https://github.com/uber/causalml/pull/335
https://github.com/uber/causalml/pull/333
https://github.com/uber/causalml/pull/325
https://github.com/uber/causalml/pull/320
https://github.com/uber/causalml/pull/311
https://github.com/uber/causalml/pull/306

causalml Documentation

9.2

0.10.0 (2021-02-18)

CausalML surpassed 235,000 downloads!

We have 5 new community contributors, Suraj (@surajiyer), Harsh (@HarshCasper), Manoj (@manojbalajil),
Matthew (@maccam912) and Vaclav (@vaclavbelak). Thanks for the contribution!

9.2.1 Major Updates

Add Policy learner, DR learner, DRIV learner by @huigangchen (#292)
Add wrapper for CEVAE, a deep latent-variable and variational autoencoder based model by @ppstacy(#276)

9.2.2 Minor Updates

Add propensity_learner to R-learner by @jeongyoonlee (#297)

Add BaseLearner class for other meta-learners to inherit from without duplicated code by @jeongyoonlee (#295)
Fix installation issue for Shap>=0.38.1 by @paullo0106 (#287)

Fix import error for sklearn>= 0.24 by @jeongyoonlee (#283)

Fix KeyError issue in Filter method for certain dataset by @surajiyer (#281)

Fix inconsistent cumlift score calculation of multiple models by @vaclavbelak (#273)

Fix duplicate values handling in feature selection method by @manojbalajil (#271)

Fix the color spectrum of SHAP summary plot for feature interpretations of meta-learners by @paullo0106
(#269)

Add ITA and value optimization related documentation by @t-tte (#264)
Fix StratifiedKFold arguments for propensity score estimation by @paullo0106 (#262)

Refactor the code with string format argument and is to compare object types, and change methods not using
bound instance to static methods by @harshcasper (#256, #260)

0.9.0 (2020-10-23)

CausalML won the 1st prize at the poster session in UberML'20
DoWhy integrated CausalML starting v0.4 (release note)
CausalML team welcomes new project leadership, Mert Bay

We have 4 new community contributors, Mario Wijaya (@mwijaya3), Harry Zhao (@deeplaunch), Christophe
(@ccrndn) and Georg Walther (@ waltherg). Thanks for the contribution!

92

Chapter 9. Changelog

https://pepy.tech/project/causalml
https://github.com/surajiyer
https://github.com/HarshCasper
https://github.com/manojbalaji1
https://github.com/maccam912
https://github.com/vaclavbelak
https://github.com/uber/causalml/pull/292
https://github.com/uber/causalml/pull/276
https://github.com/uber/causalml/pull/297
https://github.com/uber/causalml/pull/295
https://github.com/uber/causalml/pull/287
https://github.com/uber/causalml/pull/283
https://github.com/uber/causalml/pull/281
https://github.com/uber/causalml/pull/273
https://github.com/uber/causalml/pull/271
https://github.com/uber/causalml/pull/269
https://github.com/uber/causalml/pull/264
https://github.com/uber/causalml/pull/262
https://github.com/uber/causalml/pull/256
https://github.com/uber/causalml/pull/260
https://github.com/microsoft/dowhy/releases/tag/v0.4
https://github.com/mwijaya3
https://github.com/deeplaunch
https://github.com/ccrndn
https://github.com/waltherg

causalml Documentation

9.3.1 Major Updates

* Add feature importance and its visualization to UpliftDecisionTrees and UpliftRF by @yungmsh (#220)
* Add feature selection example with Filter methods by @paullo0106 (#223)

9.3.2 Minor Updates

* Implement propensity model abstraction for common interface by @waltherg (#223)

 Fix bug in BaseSClassifier and BaseXClassifier by @yungmsh and @ppstacy (#217), (#218)
¢ Fix parentNodeSummary for UpliftDecisionTrees by @paullo0106 (#238)

* Add pd.Series for propensity score condition check by @paullo0106 (#242)

* Fix the uplift random forest prediction output by @ppstacy (#236)

* Add functions and methods to init for optimization module by @mwijaya3 (#228)

* Install GitHub Stale App to close inactive issues automatically @jeongyoonlee (#237)

» Update documentation by @deeplaunch, @ccrndn, @ppstacy(#214, #231, #232)

9.4 0.8.0 (2020-07-17)

CausalML surpassed 100,000 downloads! Thanks for the support.

9.4.1 Major Updates

* Add value optimization to optimize by @t-tte (#183)

* Add counterfactual unit selection to optimize by @t-tte (#184)

* Add sensitivity analysis to metrics by @ppstacy (#199, #212)

* Add the iv estimator submodule and add 2SLS model to it by @huigangchen (#201)

9.4.2 Minor Updates

* Add GradientBoostedPropensityModel by @yungmsh (#193)

* Add covariate balance visualization by @yluogit (#200)

* Fix bug in the X learner propensity model by @ppstacy (#209)

» Update package dependencies by @jeongyoonlee (#195, #197)

» Update documentation by @jeongyoonlee, @ppstacy and @yluogit (#181, #202, #205)

9.4. 0.8.0 (2020-07-17) 93

https://github.com/uber/causalml/pull/220
https://github.com/uber/causalml/pull/223
https://github.com/uber/causalml/pull/223
https://github.com/uber/causalml/pull/217
https://github.com/uber/causalml/pull/218
https://github.com/uber/causalml/pull/238
https://github.com/uber/causalml/pull/242
https://github.com/uber/causalml/pull/236
https://github.com/uber/causalml/pull/228
https://github.com/uber/causalml/pull/237
https://github.com/uber/causalml/pull/214
https://github.com/uber/causalml/pull/231
https://github.com/uber/causalml/pull/232
https://pepy.tech/project/causalml
https://github.com/uber/causalml/pull/183
https://github.com/uber/causalml/pull/184
https://github.com/uber/causalml/pull/199
https://github.com/uber/causalml/pull/212
https://github.com/uber/causalml/pull/201
https://github.com/uber/causalml/pull/193
https://github.com/uber/causalml/pull/200
https://github.com/uber/causalml/pull/209
https://github.com/uber/causalml/pull/195
https://github.com/uber/causalml/pull/197
https://github.com/uber/causalml/pull/181
https://github.com/uber/causalml/pull/202
https://github.com/uber/causalml/pull/205

causalml Documentation

9.5 0.7.1 (2020-05-07)

Special thanks to our new community contributor, Katherine (@khof312)!

9.5.1 Major Updates

* Adjust matching distances by a factor of the number of matching columns in propensity score matching by

@yungmsh (#157)
* Add TMLE-based AUUC/Qini/lift calculation and plotting by @ppstacy (#165)

9.5.2 Minor Updates

* Fix typos and update documents by @paullo0106, @khof312, @jeongyoonlee (#150, #151, #15
* Fix error in UpliftTreeClassifier.kl_divergence() for pk == I or 0 by @jeongyoonlee (#169)

* Fix error in BaseRRegressor.fit() without propensity score input by @jeongyoonlee (#170)

9.6 0.7.0 (2020-02-28)

Special thanks to our new community contributor, Steve (@steveyang90)!

9.6.1 Major Updates

* Add a new nn inference submodule with DragonNet implementation by @yungmsh

* Add a new feature selection submodule with filter feature selection methods by @zhenyuz0500

9.6.2 Minor Updates

* Make propensity scores optional in all meta-learners by @ppstacy

* Replace eli5 permutation importance with sklearn’s by @yluogit

* Replace ElasticNetCV with LogisticRegressionCV in propensity.py by @yungmsh
* Fix the normalized uplift curve plot with negative ATE by @jeongyoonlee

* Fix the TravisCI FOSSA error for PRs from forked repo by @steveyang90

* Add documentation about tree visualization by @zhenyuz0500

5, #163)

94 Chapter 9

. Changelog

https://github.com/khof312
https://github.com/uber/causalml/pull/157
https://github.com/uber/causalml/pull/165
https://github.com/uber/causalml/pull/150
https://github.com/uber/causalml/pull/151
https://github.com/uber/causalml/pull/155
https://github.com/uber/causalml/pull/163
https://github.com/uber/causalml/pull/169
https://github.com/uber/causalml/pull/170
https://github.com/steveyang90

causalml Documentation

9.7 0.6.0 (2019-12-31)

Special thanks to our new community contributors, Fritz (@fritzo), Peter (@peterfoley) and Tomasz (@ TomaszZa-
macinski)!

* Improve UpliftTreeClassifier’s speed by 4 times by @jeongyoonlee
* Fix impurity computation in CausalTreeRegressor by @TomaszZamacinski
» Fix XGBoost related warnings by @peterfoley

* Fix typos and improve documentation by @peterfoley and @fritzo

9.8 0.5.0 (2019-11-26)

Special thanks to our new community contributors, Paul (@paullo0106) and Florian (@FlorianWilhelm)!
* Add TMLELearner, targeted maximum likelihood estimator to inference.meta by @huigangchen
¢ Add an option to DGPs for regression to simulate imbalanced propensity distribution by @huigangchen
* Fix incorrect edge connections, and add more information in the uplift tree plot by @paullo0106
* Fix an installation error related to Cython and numpy by @FlorianWilhelm
* Drop Python 2 support from setup.py by @jeongyoonlee

» Update causaltree.pyx Cython code to be compatible with scikit-learn>=0.21.0 by @jeongyoonlee

9.9 0.4.0 (2019-10-21)

* Add uplift_tree_plot() to inference.tree to visualize UpliftTreeClassifier by @zhenyuz0500

* Add the Explainer class to inference.meta to provide feature importances using SHAP and eli5’s Permutation-
Importance by @yungmsh

* Add bootstrap confidence intervals for the average treatment effect estimates of meta learners by @ppstacy

9.10 0.3.0 (2019-09-17)

» Extend meta-learners to support classification by @t-tte
» Extend meta-learners to support multiple treatments by @yungmsh
* Fix a bug in uplift curves and add Qini curves/scores to metrics by @jeongyoonlee

* Add inference.meta. XGBRRegressor with early stopping and ranking optimization by @yluogit

9.7. 0.6.0 (2019-12-31) 95

https://github.com/fritzo
https://github.com/peterfoley
https://github.com/TomaszZamacinski
https://github.com/TomaszZamacinski
https://github.com/paullo0106
https://github.com/FlorianWilhelm

causalml Documentation

9.11 0.2.0 (2019-08-12)

* Add optimize.PolicyLearner based on Athey and Wager 2017 [6]

Add the CausalTreeRegressor estimator based on Athey and Imbens 2016 [4] (experimental)
* Add missing imports in features.py to enable label encoding with grouping of rare values in LabelEncoder()

* Fix a bug that caused the mismatch between training and prediction features in inference.meta.tlearner.predict()

9.12 0.1.0 (unreleased)

* Initial release with the Uplift Random Forest, and S/T/X/R-learners.

96 Chapter 9. Changelog

CHAPTER
TEN

INDICES AND TABLES

* genindex
* modindex

¢ search

97

causalml Documentation

98 Chapter 10. Indices and tables

[1]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

Ahmed Alaa and Mihaela Schaar. Limits of estimating heterogeneous treatment effects: guidelines for practical
algorithm design. In International Conference on Machine Learning, 129-138. 2018.

Joshua D Angrist and Jorn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s companion. Princeton
university press, 2008.

Joshua D. Angrist and Alan B. Krueger. Instrumental variables and the search for identification: from supply and
demand to natural experiments. Journal of Economic Perspectives, 15(4):69-85, December 2001. URL: https:
/Iwww.aeaweb.org/articles?id=10.1257/jep.15.4.69, doi:10.1257/jep.15.4.69.

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects. Proceedings of the Na-
tional Academy of Sciences, 113(27):7353-7360, 2016.

Susan Athey, Julie Tibshirani, Stefan Wager, and others. Generalized random forests. The Annals of Statistics,
47(2):1148-1178, 2019.

Susan Athey and Stefan Wager. Efficient policy learning. arXiv preprint arXiv:1702.02896, 2017.

Peter C. Austin and Elizabeth A. Stuart. Moving towards best practice when using inverse probability of treat-
ment weighting (iptw) using the propensity score to estimate causal treatment effects in observational stud-
ies. Statistics in Medicine, 34(28):3661-3679, 2015. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.
6607, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.6607, doi:https://doi.org/10.1002/sim.6607.

Hansotia Behram and Rukstales Brad. Incremental value modeling. Journal of Interactive Marketing, 16:35-46,
2002.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
Newey, and James Robins. Double/debiased machine learning for treatment and structural parame-
ters. The Econometrics Journal, 21(1):C1-C68, 01 2018. URL: https://doi.org/10.1111/ectj.12097,
arXiv:https://academic.oup.com/ectj/article-pdf/21/1/C1/27684918/ectj00c1.pdf, doi: 10.1111/ectj.12097.

Pierre Gutierrez and Jean-Yves Gerardy. Causal inference and uplift modeling a review of the literature. JMLR:
Workshop and Conference Proceedings 67, 2016.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep iv: a flexible approach for counterfactual
prediction. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, 1414—-1423.
JMLR. org, 2017.

Keisuke Hirano, Guido W. Imbens, and Geert Ridder. Efficient estimation of average treatment effects using
the estimated propensity score. Econometrica, 71(4):1161-1189, 2003. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/1468-0262.00442, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0262.00442,
doi:https://doi.org/10.1111/1468-0262.00442.

Guido W Imbens and Jeffrey M Wooldridge. Recent developments in the econometrics of program evaluation.
Journal of economic literature, 47(1):5-86, 2009.

99

https://www.aeaweb.org/articles?id=10.1257/jep.15.4.69
https://www.aeaweb.org/articles?id=10.1257/jep.15.4.69
https://doi.org/10.1257/jep.15.4.69
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.6607
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.6607
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.6607
https://doi.org/https://doi.org/10.1002/sim.6607
https://doi.org/10.1111/ectj.12097
https://arxiv.org/abs/https://academic.oup.com/ectj/article-pdf/21/1/C1/27684918/ectj00c1.pdf
https://doi.org/10.1111/ectj.12097
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00442
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00442
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0262.00442
https://doi.org/https://doi.org/10.1111/1468-0262.00442

causalml Documentation

[14] Edward H. Kennedy. Optimal doubly robust estimation of heterogeneous causal effects. 2020. arXiv:2004.14497.

[15] Soren R Kiinzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heterogeneous treat-
ment effects using machine learning. Proceedings of the National Academy of Sciences, 116(10):4156-4165,
2019.

[16] Mark Laan and Sherri Rose. Targeted Learning: Causal Inference for Observational and Experimental Data.
Springer-Verlag New York, 01 2011. ISBN 978-1-4419-9781-4. doi:10.1007/978-1-4419-9782-1.

[17] Ang Li and Judea Pearl. Unit selection based on counterfactual logic. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, 1793-1799. International Joint
Conferences on Artificial Intelligence Organization, 7 2019. URL: https://doi.org/10.24963/ijcai.2019/248,
doi: 10.24963/ijcai.2019/248.

[18] Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. arXiv preprint
arXiv:1712.04912, 2017.

[19] Miruna Oprescu, Vasilis Syrgkanis, and Zhiwei Steven Wu. Orthogonal random forest for heterogeneous treatment
effect estimation. CoRR, 2018. URL: http://arxiv.org/abs/1806.03467, arXiv:1806.03467.

[20] Judea Pearl. Causality. Cambridge university press, 2009.

[21] Piotr Rzepakowski and Szymon Jaroszewicz. Decision trees for uplift modeling with single and multiple treat-
ments. Knowl. Inf. Syst., 32(2):303-327, August 2012.

[22] Elizabeth A Stuart. Matching methods for causal inference: a review and a look forward. Statistical science: a
review journal of the Institute of Mathematical Statistics, 25(1):1, 2010.

[23] Yan Zhao, Xiao Fang, and David Simchi-Levi. Uplift modeling with multiple treatments and general response
types. In Proceedings of the 2017 SIAM International Conference on Data Mining, 588-596. SIAM, 2017.

[24] Zhenyu Zhao and Totte Harinen. Uplift modeling for multiple treatments with cost optimization. In 2019 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), 422-431. IEEE, 2019.

[25] P. Richard Hahn, Jared S. Murray, and Carlos Carvalho. Bayesian regression tree models for causal infer-
ence: regularization, confounding, and heterogeneous effects. arXiv e-prints, pages arXiv:1706.09523, Jun 2017.
arXiv:1706.09523.

100 Bibliography

https://arxiv.org/abs/2004.14497
https://doi.org/10.1007/978-1-4419-9782-1
https://doi.org/10.24963/ijcai.2019/248
https://doi.org/10.24963/ijcai.2019/248
http://arxiv.org/abs/1806.03467
https://arxiv.org/abs/1806.03467
https://arxiv.org/abs/1706.09523

c

causalml,

causalml
causalml

causalml
causalml
causalml
causalml

87

.dataset, 63
.inference.meta, 48
causalml.
.match, 70
.metrics, 74
.optimize, 59
.propensity, 72

inference.tree, 37

PYTHON MODULE INDEX

101

causalml Documentation

102 Python Module Index

A

ape () (in module causalml.metrics), 76
auuc_score() (in module causalml.metrics), 76

B

bar_plot_summary () (in module causalml.dataset), 63
bar_plot_summary_holdout () (in module
causalml.dataset), 63

BaseDRLearner (class in causalml.inference.meta), 48
BaseDRRegressor (class in causalml.inference.meta), 49
BaseRClassifier (class in causalml.inference.meta), 49
BaseRLearner (class in causalml.inference.meta), 50
BaseRRegressor (class in causalml.inference.meta), 52
BaseSClassifier (class in causalml.inference.meta), 52
BaseSLearner (class in causalml.inference.meta), 52
BaseSRegressor (class in causalml.inference.meta), 53
BaseTClassifier (class in causalml.inference.meta), 53
BaseTLearner (class in causalml.inference.meta), 54
BaseTRegressor (class in causalml.inference.meta), 55
BaseXClassifier (class in causalml.inference.meta), 55
BaseXLearner (class in causalml.inference.meta), 56
BaseXRegressor (class in causalml.inference.meta), 58

bootstrap() (causalml.inference.tree. CausalTreeRegressor

method), 37

bootstrap() (causalml.inference.tree. UpliftRandomForestglassi er

static method), 40

C

calibrate() (in module causalml.propensity), 73
caliper (causalml.match.NearestNeighborMatch
attribute), 70
cat_continuous () (in module causalml.inference.tree),
46
cat_group() (in module causalml.inference.tree), 46
cat_transform() (in module causalml.inference.tree),
46
causalml
module, 87
causalml.dataset
module, 63
causalml.inference.meta
module, 48

INDEX

causalml.inference.tree
module, 37
causalml .match
module, 70
causalml.metrics
module, 74
causalml.optimize
module, 59
causalml.propensity
module, 72
CausalMSE (class in causalml.inference.tree), 37
causalsens () (causalml.metrics.SensitivitySelectionBias
method), 76
CausalTreeRegressor (class in
causalml.inference.tree), 37
check_table_one() (causalml.match.MatchOptimizer
method), 70
classification_metrics() (in
causalml.metrics), 77
classifty () (causalml.inference.tree.UpliftTreeClassifier
static method), 41

module

compute_propensity_score() (in module
causalml.propensity), 73
CounterfactualUnitSelector (class in
causalml.optimize), 59
ounterfactualValueEstimator (class in

causalml.optimize), 60
create_table_one() (in module causalml.match), 71
cv_fold_index() (in module causalml.inference.tree),
47

D

DecisionTree (class in causalml.inference.tree), 38

distr_plot_single_sim() (in module
causalml.dataset), 63
divideSet () (causalml.inference.tree.UpliftTreeClassifier

static method), 42

E

ElasticNetPropensityModel
causalml.propensity), 72

(class in

103

causalml Documentation

estimate_ate() (causalml.inference.meta.BaseDRLearnefit ()

method), 48

(causalml.optimize. CounterfactualUnitSelector
method), 60

estimate_ate() (causalml.inference.meta.BaseRLearner £it () (causalml.optimize.PolicyLearner method), 61

method), 50

estimate_ate() (causalml.inference.meta.BaseSLearner

method), 52

estimate_ate() (causalml.inference.meta.BaseTLearner

method), 54

estimate_ate() (causalml.inference.meta.BaseXLearner

method), 56

estimate_ate() (causalml.inference.meta. LRSRegressor

method), 58

estimate_ate() (causalml.inference.meta. TMLELearner

method), 58

estimate_ate() (causalml.inference.tree. CausalTreeRegressor

method), 37

evaluate_Chi Q) (causalml.inference.tree. UpliftTreeClassifier
fit_predict() (causalml.inference.tree. CausalTreeRegressor

static method), 42

evaluate_CTS Q) (causalml.inference.tree. UpliftTreeClassifier

static method), 42

evaluate_DDP () (causalml.inference.tree. UpliftTreeClassifier

static method), 42

£it O (causalml.propensity. GradientBoostedPropensityModel

method), 72

fit () (causalml.propensity.PropensityModel method),
73

fit_predict() (causalml.inference.meta.BaseDRLearner
method), 48

fit_predict () (causalml.inference.meta.BaseRLearner
method), 51

fit_predict() (causalml.inference.meta.BaseSLearner
method), 53

fit_predict() (causalml.inference.meta.BaseTLearner

method), 54

fit_predict () (causalml.inference.meta.BaseXLearner

method), 57

method), 38
fit_predict() (causalml.propensity.PropensityModel
method), 73

evaluate_ED() (causalml.inference.tree. UpliftTreeClassiﬁﬁ

static method), 42

get_actual_value() (in module causalml.optimize),

evaluate_KL () (causalml.inference.tree. UpliftTreeClassifier 61

static method), 42

F

£fillQ (causalml.inference.tree. UpliftTreeClassifier
method), 43

fillTree () (causalml.inference.tree.UpliftTreeClassifier
method), 43

fitQO (causalml.inference.meta. BaseDRLearner
method), 48

fitO (causalml.inference.meta.BaseRClassifier
method), 50

£fit Q) (causalml.inference.meta.BaseRLearner method),
51

fitQQ (causalml.inference.meta.BaseSLearner method),
53

fit Q) (causalml.inference.meta.BaseTLearner method),
54

fitQ (causalml.inference.meta.BaseXClassifier
method), 55

fit Q) (causalml.inference.meta.BaseXLearner method),
57

fitQ (causalml.inference.meta. XGBRRegressor
method), 59

fitQ (causalml.inference.tree. CausalTreeRegressor
method), 38

fit Q (causalml.inference.tree.UpliftRandomForestClassifier
method), 40

fitQ (causalml.inference.tree. UpliftTreeClassifier
method), 43

get_ate_ci(Q) (causalml.metrics.Sensitivity method), 74

get_class_object() (causalml.metrics.Sensitivity
static method), 74

get_cumgain() (in module causalml.metrics), 77

get_cumlift () (in module causalml.metrics), 77

get_prediction() (causalml.metrics.Sensitivity
method), 74

get_qini () (in module causalml.metrics), 78

get_synthetic_auuc() (in module causalml.dataset),

63
get_synthetic_preds() (in module causalml.dataset),
64
get_synthetic_preds_holdout() (in module
causalml.dataset), 64
get_synthetic_summary() (in module
causalml.dataset), 64
get_synthetic_summary_holdout() (in module

causalml.dataset), 64
get_tmlegain() (in module causalml.metrics), 78
get_tmleqini () (in module causalml.metrics), 79
get_treatment_costs() (in module
causalml.optimize), 62
get_uplift_best() (in module causalml.optimize), 62
gini Q) (in module causalml.metrics), 79
GradientBoostedPropensityModel
causalml.propensity), 72
group_uniqueCounts()
(causalml.inference.tree. UpliftTreeClassifier
method), 43

(class in

104

Index

causalml Documentation

growDecisionTreeFrom()
(causalml.inference.tree. UpliftTreeClassifier
method), 44

K

kpi_transform() (in module causalml.inference.tree),
47

L

LogisticRegressionPropensitylModel
causalml.propensity), 73

logloss () (in module causalml.metrics), 79

LRSRegressor (class in causalml.inference.meta), 58

M

mae () (in module causalml.metrics), 79

make_uplift_classification()
causalml.dataset), 65

mape () (in module causalml.metrics), 80

match() (causalml.match.NearestNeighborMatch
method), 71

match_and_check() (causalml.match.MatchOptimizer
method), 70

(class in

(in module

match_by_group () (causalml.match.NearestNeighborMatch

method), 71
MatchOptimizer (class in causalml.match), 70
MLPTRegressor (class in causalml.inference.meta), 58
module
causalml, 87
causalml.dataset, 63
causalml.inference.meta, 48
causalml.inference. tree, 37
causalml.match, 70
causalml .metrics, 74
causalml.optimize, 59
causalml.propensity, 72

N

n_jobs (causalml.match.NearestNeighborMatch at-
tribute), 71

NearestNeighborMatch (class in causalml.match), 70

normI() (causalml.inference.tree.UpliftTreeClassifier

method), 44

P

partial_rsqgs_confounding()
(causalml.metrics.SensitivitySelectionBias
static method), 76

plot) (causalml.metrics.SensitivitySelectionBias static
method), 76

plot Q) (in module causalml.metrics), 80

plot_gain(Q) (in module causalml.metrics), 80

plot_lift () (in module causalml.metrics), 81

plot_qgini) (in module causalml.metrics), 81
plot_tmlegain() (in module causalml.metrics), 82
plot_tmleqini () (in module causalml.metrics), 82
PolicyLearner (class in causalml.optimize), 61

predict() (causalml.inference.meta. BaseDRLearner
method), 49

predict() (causalml.inference.meta.BaseRClassifier
method), 50

predict() (causalml.inference.meta.BaseRLearner
method), 52

predict() (causalml.inference.meta.BaseSClassifier
method), 52

predict() (causalml.inference.meta.BaseSLearner
method), 53

predict() (causalml.inference.meta.BaseTClassifier
method), 54

predict() (causalml.inference.meta.BaseTLearner
method), 55

predict() (causalml.inference.meta.BaseXClassifier
method), 56

predict() (causalml.inference.meta. BaseXLearner
method), 57

predict () (causalml.inference.tree. CausalTreeRegressor
method), 38

predict) (causalml.inference.tree.UpliftRandomForestClassifier
method), 40

predict() (causalml.inference.tree.UpliftTreeClassifier
method), 44

predict) (causalml.optimize. CounterfactualUnitSelector
method), 60
predict() (causalml.optimize.PolicyLearner method),
61
predict) (causalml.propensity. GradientBoostedPropensityModel
method), 72
predict() (causalml.propensity. PropensityModel
method), 73
predict_best () (causalml.optimize. CounterfactualValueEstimator
method), 61
predict_counterfactuals()
(causalml.optimize. CounterfactualValueEstimator
method), 61
predict_proba()
method), 61
PropensitylModel (class in causalml.propensity), 73
prune() (causalml.inference.tree.UpliftTreeClassifier
method), 45
pruneTree() (causalml.inference.tree. UpliftTreeClassifier
method), 45

(causalml.optimize.PolicyLearner

Q

gini_score() (in module causalml.metrics), 83

R

r2_score() (in module causalml.metrics), 83

Index

105

causalml Documentation

random_state (causalml.match.NearestNeighborMatch

attribute), 71

(causalml.match.NearestNeighborMatch

tribute), 71

regression_metrics() (in module causalml.metrics),
84

replace

ratio at-

(causalml.match.NearestNeighborMatch
attribute), 70
rmse () (in module causalml.metrics), 84
roc_auc_score() (in module causalml.metrics), 85

S

scatter_plot_single_sim() (in module
causalml.dataset), 66

scatter_plot_summary() (in module
causalml.dataset), 66

scatter_plot_summary_holdout () (in module
causalml.dataset), 67

search_best_match()
(causalml.match.MatchOptimizer method),

70

Sensitivity (class in causalml.metrics), 74

sensitivity_analysis()
(causalml.metrics.Sensitivity method), 75

sensitivity_estimate()
(causalml.metrics.Sensitivity method), 75

sensitivity_estimate()
(causalml.metrics.SensitivityPlaceboTreatment
method), 75

sensitivity_estimate()
(causalml.metrics.SensitivityRandomCause
method), 75

sensitivity_estimate()
(causalml.metrics.SensitivityRandomReplace
method), 75

sensitivity_estimate()
(causalml.metrics.SensitivitySubsetData
method), 76

SensitivityPlaceboTreatment
causalml.metrics), 75

SensitivityRandomCause (class in causalml.metrics),
75

(class in

SensitivityRandomReplace (class in
causalml.metrics), 75
SensitivitySelectionBias (class in

causalml.metrics), 75
SensitivitySubsetData (class in causalml.metrics),
76
shuffle (causalml.match.NearestNeighborMatch
attribute), 71
simulate_easy_propensity_difficult_baseline()
(in module causalml.dataset), 67
simulate_hidden_confounder () (in
causalml.dataset), 67

module

simulate_nuisance_and_easy_treatment() (in
module causalml.dataset), 68

simulate_randomized_trial () (in module
causalml.dataset), 68

simulate_unrelated_treatment_control() (in

module causalml.dataset), 69

single_match() (causalml.match.MatchOptimizer
method), 70

smape () (in module causalml.metrics), 87

smd () (in module causalml.match), 72

summary () (causalml.metrics.Sensitivity method), 75

summary () (causalml.metrics.SensitivitySelectionBias
method), 76

synthetic_data() (in module causalml.dataset), 69

T

TMLELearner (class in causalml.inference.meta), 58
tree_node_summary ()
(causalml.inference.tree. UpliftTreeClassifier
method), 45

U

uplift_classification_results()
(causalml.inference.tree. UpliftTreeClassifier
method), 46
uplift_tree_plot() (in
causalml.inference.tree), 47
uplift_tree_string() (in
causalml.inference.tree), 47
UpliftRandomForestClassifier
causalml.inference.tree), 39
UpliftTreeClassifier
causalml.inference.tree), 41

module
module
in

(class

(class

X

XGBDRRegressor (class in causalml.inference.meta), 59
XGBRRegressor (class in causalml.inference.meta), 59
XGBTRegressor (class in causalml.inference.meta), 59

106

Index

	About Causal ML
	Methodology
	Meta-Learner Algorithms
	S-Learner
	T-Learner
	X-Learner
	R-Learner
	Doubly Robust (DR) learner
	Doubly Robust Instrumental Variable (DRIV) learner

	Tree-Based Algorithms
	Uplift Tree
	KL
	ED
	Chi
	DDP
	CTS

	Value optimization methods
	Counterfactual Unit Selection
	Counterfactual Value Estimator

	Selected traditional methods
	Matching
	Inverse probability of treatment weighting
	2-Stage Least Squares (2SLS)
	LATE

	Targeted maximum likelihood estimation (TMLE) for ATE

	Installation
	Install using conda
	Install using pip
	Install from source

	Examples
	Propensity Score
	Propensity Score Estimation
	Propensity Score Matching

	Average Treatment Effect (ATE) Estimation
	Meta-learners and Uplift Trees

	More algorithms
	Treatment optimization algorithms
	Instrumental variables algorithms
	Neural network based algorithms

	Interpretation
	Validation
	Synthetic Data Generation Process
	Single Simulation
	Multiple Simulations

	Sensitivity Analysis
	Feature Selection

	Interpretable Causal ML
	Meta-Learner Feature Importances
	Uplift Tree Visualization
	Uplift Tree Feature Importances

	Validation
	Validation with Multiple Estimates
	Model Robustness for Meta Algorithms
	User Level/Segment Level/Cohort Level Consistency
	Stability between Cohorts

	Validation with Synthetic Data Sets
	Mechanism 1
	Mechanism 2
	Mechanism 3
	Mechanism 4

	Validation with Uplift Curve (AUUC)
	Validation with Sensitivity Analysis
	Placebo Treatment
	Irrelevant Additional Confounder
	Subset validation
	Random Replace
	Selection Bias

	causalml package
	Submodules
	causalml.inference.tree module
	causalml.inference.meta module
	causalml.optimize module
	causalml.dataset module
	causalml.match module
	causalml.propensity module
	causalml.metrics module
	Module contents

	References
	Open Source Software Projects
	Python Packages
	R Packages

	Papers

	Changelog
	0.11.0 (2021-07-28)
	Major Updates
	Minor Updates

	0.10.0 (2021-02-18)
	Major Updates
	Minor Updates

	0.9.0 (2020-10-23)
	Major Updates
	Minor Updates

	0.8.0 (2020-07-17)
	Major Updates
	Minor Updates

	0.7.1 (2020-05-07)
	Major Updates
	Minor Updates

	0.7.0 (2020-02-28)
	Major Updates
	Minor Updates

	0.6.0 (2019-12-31)
	0.5.0 (2019-11-26)
	0.4.0 (2019-10-21)
	0.3.0 (2019-09-17)
	0.2.0 (2019-08-12)
	0.1.0 (unreleased)

	Indices and tables
	Bibliography
	Python Module Index
	Index

