Source code for causalml.inference.meta.rlearner

from copy import deepcopy
import logging
import numpy as np
import pandas as pd
from tqdm import tqdm
from scipy.stats import norm
from sklearn.model_selection import cross_val_predict, KFold, train_test_split
from xgboost import XGBRegressor

from causalml.inference.meta.base import BaseLearner
from causalml.inference.meta.utils import (check_treatment_vector,
    get_xgboost_objective_metric, convert_pd_to_np, get_weighted_variance)
from causalml.inference.meta.explainer import Explainer
from causalml.propensity import compute_propensity_score, ElasticNetPropensityModel


logger = logging.getLogger('causalml')


[docs]class BaseRLearner(BaseLearner): """A parent class for R-learner classes. An R-learner estimates treatment effects with two machine learning models and the propensity score. Details of R-learner are available at Nie and Wager (2019) (https://arxiv.org/abs/1712.04912). """ def __init__(self, learner=None, outcome_learner=None, effect_learner=None, propensity_learner=ElasticNetPropensityModel(), ate_alpha=.05, control_name=0, n_fold=5, random_state=None): """Initialize an R-learner. Args: learner (optional): a model to estimate outcomes and treatment effects outcome_learner (optional): a model to estimate outcomes effect_learner (optional): a model to estimate treatment effects. It needs to take `sample_weight` as an input argument for `fit()` propensity_learner (optional): a model to estimate propensity scores. `ElasticNetPropensityModel()` will be used by default. ate_alpha (float, optional): the confidence level alpha of the ATE estimate control_name (str or int, optional): name of control group n_fold (int, optional): the number of cross validation folds for outcome_learner random_state (int or RandomState, optional): a seed (int) or random number generator (RandomState) """ assert (learner is not None) or ((outcome_learner is not None) and (effect_learner is not None)) assert propensity_learner is not None self.model_mu = outcome_learner if outcome_learner is not None else deepcopy(learner) self.model_tau = effect_learner if effect_learner is not None else deepcopy(learner) self.model_p = propensity_learner self.ate_alpha = ate_alpha self.control_name = control_name self.random_state = random_state self.cv = KFold(n_splits=n_fold, shuffle=True, random_state=random_state) self.propensity = None self.propensity_model = None def __repr__(self): return (f'{self.__class__.__name__}\n' f'\toutcome_learner={self.model_mu.__repr__()}\n' f'\teffect_learner={self.model_tau.__repr__()}\n' f'\tpropensity_learner={self.model_p.__repr__()}')
[docs] def fit(self, X, treatment, y, p=None, sample_weight=None, verbose=True): """Fit the treatment effect and outcome models of the R learner. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores. sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the weight of each observation for `effect_learner`. If None, it assumes equal weight. verbose (bool, optional): whether to output progress logs """ X, treatment, y = convert_pd_to_np(X, treatment, y) check_treatment_vector(treatment, self.control_name) if sample_weight is not None: assert len(sample_weight) == len(y), "Data length must be equal for sample_weight and the input data" sample_weight = convert_pd_to_np(sample_weight) self.t_groups = np.unique(treatment[treatment != self.control_name]) self.t_groups.sort() if p is None: self._set_propensity_models(X=X, treatment=treatment, y=y) p = self.propensity else: p = self._format_p(p, self.t_groups) self._classes = {group: i for i, group in enumerate(self.t_groups)} self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups} self.vars_c = {} self.vars_t = {} if verbose: logger.info('generating out-of-fold CV outcome estimates') yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, n_jobs=-1) for group in self.t_groups: mask = (treatment == group) | (treatment == self.control_name) treatment_filt = treatment[mask] X_filt = X[mask] y_filt = y[mask] yhat_filt = yhat[mask] p_filt = p[group][mask] w = (treatment_filt == group).astype(int) weight = (w - p_filt) ** 2 diff_c = y_filt[w == 0] - yhat_filt[w == 0] diff_t = y_filt[w == 1] - yhat_filt[w == 1] if sample_weight is not None: sample_weight_filt = sample_weight[mask] sample_weight_filt_c = sample_weight_filt[w == 0] sample_weight_filt_t = sample_weight_filt[w == 1] self.vars_c[group] = get_weighted_variance(diff_c, sample_weight_filt_c) self.vars_t[group] = get_weighted_variance(diff_t, sample_weight_filt_t) weight *= sample_weight_filt # update weight else: self.vars_c[group] = diff_c.var() self.vars_t[group] = diff_t.var() if verbose: logger.info('training the treatment effect model for {} with R-loss'.format(group)) self.models_tau[group].fit(X_filt, (y_filt - yhat_filt) / (w - p_filt), sample_weight=weight)
[docs] def predict(self, X, p=None): """Predict treatment effects. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix Returns: (numpy.ndarray): Predictions of treatment effects. """ X = convert_pd_to_np(X) te = np.zeros((X.shape[0], self.t_groups.shape[0])) for i, group in enumerate(self.t_groups): dhat = self.models_tau[group].predict(X) te[:, i] = dhat return te
[docs] def fit_predict(self, X, treatment, y, p=None, sample_weight=None, return_ci=False, n_bootstraps=1000, bootstrap_size=10000, verbose=True): """Fit the treatment effect and outcome models of the R learner and predict treatment effects. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores. sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the weight of each observation for `effect_learner`. If None, it assumes equal weight. return_ci (bool): whether to return confidence intervals n_bootstraps (int): number of bootstrap iterations bootstrap_size (int): number of samples per bootstrap verbose (bool): whether to output progress logs Returns: (numpy.ndarray): Predictions of treatment effects. Output dim: [n_samples, n_treatment]. If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment], UB [n_samples, n_treatment] """ X, treatment, y = convert_pd_to_np(X, treatment, y) self.fit(X, treatment, y, p, sample_weight, verbose=verbose) te = self.predict(X) if not return_ci: return te else: t_groups_global = self.t_groups _classes_global = self._classes model_mu_global = deepcopy(self.model_mu) models_tau_global = deepcopy(self.models_tau) te_bootstraps = np.zeros(shape=(X.shape[0], self.t_groups.shape[0], n_bootstraps)) logger.info('Bootstrap Confidence Intervals') for i in tqdm(range(n_bootstraps)): if p is None: p = self.propensity else: p = self._format_p(p, self.t_groups) te_b = self.bootstrap(X, treatment, y, p, size=bootstrap_size) te_bootstraps[:, :, i] = te_b te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100, axis=2) te_upper = np.percentile(te_bootstraps, (1 - self.ate_alpha / 2) * 100, axis=2) # set member variables back to global (currently last bootstrapped outcome) self.t_groups = t_groups_global self._classes = _classes_global self.model_mu = deepcopy(model_mu_global) self.models_tau = deepcopy(models_tau_global) return (te, te_lower, te_upper)
[docs] def estimate_ate(self, X, treatment, y, p=None, sample_weight=None, bootstrap_ci=False, n_bootstraps=1000, bootstrap_size=10000): """Estimate the Average Treatment Effect (ATE). Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores. sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the weight of each observation for `effect_learner`. If None, it assumes equal weight. bootstrap_ci (bool): whether run bootstrap for confidence intervals n_bootstraps (int): number of bootstrap iterations bootstrap_size (int): number of samples per bootstrap Returns: The mean and confidence interval (LB, UB) of the ATE estimate. """ X, treatment, y = convert_pd_to_np(X, treatment, y) te = self.fit_predict(X, treatment, y, p, sample_weight, return_ci=False) ate = np.zeros(self.t_groups.shape[0]) ate_lb = np.zeros(self.t_groups.shape[0]) ate_ub = np.zeros(self.t_groups.shape[0]) for i, group in enumerate(self.t_groups): w = (treatment == group).astype(int) prob_treatment = float(sum(w)) / X.shape[0] _ate = te[:, i].mean() se = (np.sqrt((self.vars_t[group] / prob_treatment) + (self.vars_c[group] / (1 - prob_treatment)) + te[:, i].var()) / X.shape[0]) _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2) _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2) ate[i] = _ate ate_lb[i] = _ate_lb ate_ub[i] = _ate_ub if not bootstrap_ci: return ate, ate_lb, ate_ub else: t_groups_global = self.t_groups _classes_global = self._classes model_mu_global = deepcopy(self.model_mu) models_tau_global = deepcopy(self.models_tau) logger.info('Bootstrap Confidence Intervals for ATE') ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0], n_bootstraps)) for n in tqdm(range(n_bootstraps)): if p is None: p = self.propensity else: p = self._format_p(p, self.t_groups) cate_b = self.bootstrap(X, treatment, y, p, size=bootstrap_size) ate_bootstraps[:, n] = cate_b.mean() ate_lower = np.percentile(ate_bootstraps, (self.ate_alpha / 2) * 100, axis=1) ate_upper = np.percentile(ate_bootstraps, (1 - self.ate_alpha / 2) * 100, axis=1) # set member variables back to global (currently last bootstrapped outcome) self.t_groups = t_groups_global self._classes = _classes_global self.model_mu = deepcopy(model_mu_global) self.models_tau = deepcopy(models_tau_global) return ate, ate_lower, ate_upper
[docs]class BaseRRegressor(BaseRLearner): """ A parent class for R-learner regressor classes. """ def __init__(self, learner=None, outcome_learner=None, effect_learner=None, propensity_learner=ElasticNetPropensityModel(), ate_alpha=.05, control_name=0, n_fold=5, random_state=None): """Initialize an R-learner regressor. Args: learner (optional): a model to estimate outcomes and treatment effects outcome_learner (optional): a model to estimate outcomes effect_learner (optional): a model to estimate treatment effects. It needs to take `sample_weight` as an input argument for `fit()` propensity_learner (optional): a model to estimate propensity scores. `ElasticNetPropensityModel()` will be used by default. ate_alpha (float, optional): the confidence level alpha of the ATE estimate control_name (str or int, optional): name of control group n_fold (int, optional): the number of cross validation folds for outcome_learner random_state (int or RandomState, optional): a seed (int) or random number generator (RandomState) """ super().__init__( learner=learner, outcome_learner=outcome_learner, effect_learner=effect_learner, propensity_learner=propensity_learner, ate_alpha=ate_alpha, control_name=control_name, n_fold=n_fold, random_state=random_state)
[docs]class BaseRClassifier(BaseRLearner): """ A parent class for R-learner classifier classes. """ def __init__(self, outcome_learner=None, effect_learner=None, propensity_learner=ElasticNetPropensityModel(), ate_alpha=.05, control_name=0, n_fold=5, random_state=None): """Initialize an R-learner classifier. Args: outcome_learner: a model to estimate outcomes. Should be a classifier. effect_learner: a model to estimate treatment effects. It needs to take `sample_weight` as an input argument for `fit()`. Should be a regressor. propensity_learner (optional): a model to estimate propensity scores. `ElasticNetPropensityModel()` will be used by default. ate_alpha (float, optional): the confidence level alpha of the ATE estimate control_name (str or int, optional): name of control group n_fold (int, optional): the number of cross validation folds for outcome_learner random_state (int or RandomState, optional): a seed (int) or random number generator (RandomState) """ super().__init__( learner=None, outcome_learner=outcome_learner, effect_learner=effect_learner, propensity_learner=propensity_learner, ate_alpha=ate_alpha, control_name=control_name, n_fold=n_fold, random_state=random_state) if (outcome_learner is None) and (effect_learner is None): raise ValueError("Either the outcome learner or the effect learner must be specified.")
[docs] def fit(self, X, treatment, y, p=None, sample_weight=None, verbose=True): """Fit the treatment effect and outcome models of the R learner. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix treatment (np.array or pd.Series): a treatment vector y (np.array or pd.Series): an outcome vector p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores. sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the weight of each observation for `effect_learner`. If None, it assumes equal weight. verbose (bool, optional): whether to output progress logs """ X, treatment, y = convert_pd_to_np(X, treatment, y) check_treatment_vector(treatment, self.control_name) if sample_weight is not None: assert len(sample_weight) == len(y), "Data length must be equal for sample_weight and the input data" sample_weight = convert_pd_to_np(sample_weight) self.t_groups = np.unique(treatment[treatment != self.control_name]) self.t_groups.sort() if p is None: self._set_propensity_models(X=X, treatment=treatment, y=y) p = self.propensity else: p = self._format_p(p, self.t_groups) self._classes = {group: i for i, group in enumerate(self.t_groups)} self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups} self.vars_c = {} self.vars_t = {} if verbose: logger.info('generating out-of-fold CV outcome estimates') yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, method='predict_proba', n_jobs=-1)[:, 1] for group in self.t_groups: mask = (treatment == group) | (treatment == self.control_name) treatment_filt = treatment[mask] X_filt = X[mask] y_filt = y[mask] yhat_filt = yhat[mask] p_filt = p[group][mask] w = (treatment_filt == group).astype(int) weight = (w - p_filt) ** 2 diff_c = y_filt[w == 0] - yhat_filt[w == 0] diff_t = y_filt[w == 1] - yhat_filt[w == 1] if sample_weight is not None: sample_weight_filt = sample_weight[mask] sample_weight_filt_c = sample_weight_filt[w == 0] sample_weight_filt_t = sample_weight_filt[w == 1] self.vars_c[group] = get_weighted_variance(diff_c, sample_weight_filt_c) self.vars_t[group] = get_weighted_variance(diff_t, sample_weight_filt_t) weight *= sample_weight_filt # update weight else: self.vars_c[group] = diff_c.var() self.vars_t[group] = diff_t.var() if verbose: logger.info('training the treatment effect model for {} with R-loss'.format(group)) self.models_tau[group].fit(X_filt, (y_filt - yhat_filt) / (w - p_filt), sample_weight=weight)
[docs] def predict(self, X, p=None): """Predict treatment effects. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix Returns: (numpy.ndarray): Predictions of treatment effects. """ X = convert_pd_to_np(X) te = np.zeros((X.shape[0], self.t_groups.shape[0])) for i, group in enumerate(self.t_groups): dhat = self.models_tau[group].predict(X) te[:, i] = dhat return te
[docs]class XGBRRegressor(BaseRRegressor): def __init__(self, early_stopping=True, test_size=0.3, early_stopping_rounds=30, effect_learner_objective='rank:pairwise', effect_learner_n_estimators=500, random_state=42, *args, **kwargs): """Initialize an R-learner regressor with XGBoost model using pairwise ranking objective. Args: early_stopping: whether or not to use early stopping when fitting effect learner test_size (float, optional): the proportion of the dataset to use as validation set when early stopping is enabled early_stopping_rounds (int, optional): validation metric needs to improve at least once in every early_stopping_rounds round(s) to continue training effect_learner_objective (str, optional): the learning objective for the effect learner (default = 'rank:pairwise') effect_learner_n_estimators (int, optional): number of trees to fit for the effect learner (default = 500) """ assert isinstance(random_state, int), 'random_state should be int.' objective, metric = get_xgboost_objective_metric(effect_learner_objective) self.effect_learner_objective = objective self.effect_learner_eval_metric = metric self.effect_learner_n_estimators = effect_learner_n_estimators self.early_stopping = early_stopping if self.early_stopping: self.test_size = test_size self.early_stopping_rounds = early_stopping_rounds super().__init__( outcome_learner=XGBRegressor(random_state=random_state, *args, **kwargs), effect_learner=XGBRegressor(objective=self.effect_learner_objective, n_estimators=self.effect_learner_n_estimators, random_state=random_state, *args, **kwargs) )
[docs] def fit(self, X, treatment, y, p=None, sample_weight=None, verbose=True): """Fit the treatment effect and outcome models of the R learner. Args: X (np.matrix or np.array or pd.Dataframe): a feature matrix y (np.array or pd.Series): an outcome vector p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores. sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the weight of each observation for `effect_learner`. If None, it assumes equal weight. verbose (bool, optional): whether to output progress logs """ X, treatment, y = convert_pd_to_np(X, treatment, y) check_treatment_vector(treatment, self.control_name) # initialize equal sample weight if it's not provided, for simplicity purpose sample_weight = convert_pd_to_np(sample_weight) if sample_weight is not None else convert_pd_to_np(np.ones(len(y))) assert len(sample_weight) == len(y), "Data length must be equal for sample_weight and the input data" self.t_groups = np.unique(treatment[treatment != self.control_name]) self.t_groups.sort() if p is None: self._set_propensity_models(X=X, treatment=treatment, y=y) p = self.propensity else: p = self._format_p(p, self.t_groups) self._classes = {group: i for i, group in enumerate(self.t_groups)} self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups} self.vars_c = {} self.vars_t = {} if verbose: logger.info('generating out-of-fold CV outcome estimates') yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, n_jobs=-1) for group in self.t_groups: treatment_mask = (treatment == group) | (treatment == self.control_name) treatment_filt = treatment[treatment_mask] w = (treatment_filt == group).astype(int) X_filt = X[treatment_mask] y_filt = y[treatment_mask] yhat_filt = yhat[treatment_mask] p_filt = p[group][treatment_mask] sample_weight_filt = sample_weight[treatment_mask] if verbose: logger.info('training the treatment effect model for {} with R-loss'.format(group)) if self.early_stopping: X_train_filt, X_test_filt, y_train_filt, y_test_filt, yhat_train_filt, yhat_test_filt, \ w_train, w_test, p_train_filt, p_test_filt, sample_weight_train_filt, sample_weight_test_filt \ = train_test_split( X_filt, y_filt, yhat_filt, w, p_filt, sample_weight_filt, test_size=self.test_size, random_state=self.random_state ) weight = sample_weight_filt self.models_tau[group].fit(X=X_train_filt, y=(y_train_filt - yhat_train_filt) / (w_train - p_train_filt), sample_weight=sample_weight_train_filt * ((w_train - p_train_filt) ** 2), eval_set=[(X_test_filt, (y_test_filt - yhat_test_filt) / (w_test - p_test_filt))], sample_weight_eval_set=[sample_weight_test_filt * ((w_test - p_test_filt) ** 2)], eval_metric=self.effect_learner_eval_metric, early_stopping_rounds=self.early_stopping_rounds, verbose=verbose) else: self.models_tau[group].fit(X_filt, (y_filt - yhat_filt) / (w - p_filt), sample_weight=sample_weight_filt * ((w - p_filt) ** 2), eval_metric=self.effect_learner_eval_metric) diff_c = y_filt[w == 0] - yhat_filt[w == 0] diff_t = y_filt[w == 1] - yhat_filt[w == 1] sample_weight_filt_c = sample_weight_filt[w == 0] sample_weight_filt_t = sample_weight_filt[w == 1] self.vars_c[group] = get_weighted_variance(diff_c, sample_weight_filt_c) self.vars_t[group] = get_weighted_variance(diff_t, sample_weight_filt_t)